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Abstract

Science, like any other cognitive activity, is grounded in the sensorimo-
tor interaction of our bodies with the environment. Human embodiment
thus constrains the class of scientific concepts and theories which are ac-
cessible to us. The paper explores the possibility of doing science with ar-
tificial cognitive agents, in the framework of an interactivist-constructivist
cognitive model of science. Intelligent robots, by virtue of having different
sensorimotor capabilities, may overcome the fundamental limitations of
human science and provide important technological innovations. Mathe-
matics and nanophysics are prime candidates for being studied by artificial
scientists.

1 Introduction

Science is one of the highest achievements of human cognition, and its tech-
nological applications are certainly extremely important to human civilization.
This paper argues that, in spite of the impressive results achieved so far, hu-
man science has fundamental limitations, given by our embodiment. In order
to ensure the unconstrained advancement of science, intelligent robots capable
of doing science should be built.

First, we briefly present an interactivist - constructivist cognitive model of
science. It sets a framework for discussing the capabilities of cognitive agents
needed for doing science and the relationship between science and embodiment.
We introduce next artificially made science and argue that it may overcome the
limitations of human science. Mathematics seems to be the field for which it is
easiest to build artificial scientists, but their most important contribution will
be in domains distant from human sensorimotor experience, such as nanotech-
nology. We also compare the current approach to artificial science with previous
work in the field of automated science and machine discovery.
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2 Science – a cognitive point of view

Science is a systematic process by which we come to understand the structure
of the surrounding environment, to generate predictions about evolutions and
explanations of causality in this environment. Social factors influence the evolu-
tion of science, by establishing socially accepted truth, setting research agendas
and through the communication of scientific results. But before science becomes
a social issue, scientific concepts and theories must be generated, understood
and verified by the scientists themselves. Here the focus will be on the cognitive
properties of a single individual needed for science.

2.1 Interactionist-constructivist cognition

The cognitive model of cognition presented here has as epistemological frame-
work the interactionist-constructivist model of cognition of Indurkhya (1992),
originally developed for explaining the understanding of similarity creating me-
taphors. According to this theory, reality does not have a mind-independent
ontology: the concepts of the cognitive agent impose an ontology to the world.
The concepts are internal to the agent and generated by its sensorimotor inter-
action with the environment. However, the structure of the world with respect
to this ontology cannot be arbitrary: reality has a structure external to the
cognitive agent. It is autonomous and manifested in the structure of the senso-
rimotor data set, directly accessible to the agent. We may assume that reality
exists prior to conceptualization, but its ontology does not.

While some of the empirical findings that motivated these considerations
come from cognitive anthropology and psychology (Indurkhya, 1992, pp. 94–
111), this theory is also largely compatible with the results of modern science. It
has been established that it is pointless to look for the final theory of the world,
the final truth, which would be the equivalent of discovering its “real” ontology.
A scientific theory can only be refuted, not justified, and may be considered valid
only until its refutation. This follows not only from theoretical considerations
(Popper, 1959), but was also shown by modern physics (Feynman, 1965 / 1992,
chap. 7). Moreover, a theory should only approximate relevant aspects of
reality, balancing predictive power with complexity, otherwise its details would
be unmanageable for our finite cognitive capabilities (Tolman, 1932). A scientific
theory is however useful for its coherence (viability, functional fitness) with
a limited domain of the world (see also Peschl, 2001). Quantum mechanics
and the theory of relativity are incompatible theories, with different ontologies;
however, they are both accepted as valid theories for their explanatory domain.
But scientific theories cannot be arbitrary: nature resists their predictions. The
result of an experiment is given solely by the structure of reality.

As we will show later, an interactionist - constructivist model of cognition
also agrees with the latest results in neuroscience and cognitive science.
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2.2 Neurobiological foundations for knowledge and sci-
ence

It is generally accepted that the biological basis of cognition is the neuronal ac-
tivity. Part of the interaction of the environment with the organism is captured
by sensors and is translated in neuronal patterns of activation. Activation of mo-
tor neurons results in actions that are externalized in the environment and may
change it, or change its perception by the agent (as in a movement). Synapses
transmit neuronal activation to other neurons, and in general it is sustained
even in the absence of significant sensorial input.

Quasi-hebbian learning, associating concomitant activations, is widely con-
sidered as an important learning mechanism in biological neural networks and it
was demonstrated experimentally in some areas of the mammalian brain (Kan-
del, Schwartz, & Jessel, 2000, chap. 63; Rolls & Treves, 1998, chap. 1; Fuster,
1995, chap. 3). In general, learning corresponds to changes in the chemical com-
position of the neuronal environment, and modifications of synaptic strengths
and synaptic connectivity. Long term modifications in the synaptic connectiv-
ity yields a neural constructivism (Quartz & Sejnowski, 1997) that mirrors and
is the physical basis of the conceptual one. These changes are caused by the
neural activity, which is largely environmentally derived: learning and cognitive
development in biological agents is thus inextricably related to their sensorimo-
tor capabilities, and thus to their embodiment (see also Tolman, 1932, Gibson,
1979, MacDorman et al., 2000).

The representational properties of the brain, which are mostly a result of
learning, thus also largely depend on the sensorimotor capabilities of the sup-
porting body. Moreover, it is believed that imagery and short term memory
share many common neural mechanisms with perception or motor action (Koss-
lyn & Thompson, 2000; Fuster, 1995; Jeannerod, 1994, 1999). Many results
point out that the neural correlates of a certain concept, activated, for example,
by a word, are activations of the neural networks that were also active during
the experiences of the person with the significant of that word (Damasio, 1990;
Pulvermuller, 1999; Martin, Ungerleider, & Haxby, 2000). The representational
properties of a symbol cannot thus go further than the perceptual, motor or
emotional states that are associated by learning with the phonological or vi-
sual form of the symbol. It was argued that even the understanding of abstract
concepts is ultimately grounded like this (Barsalou, 1999). Such grounded repre-
sentations are internal to the cognitive agent, and do not have the shortcomings
of the classical symbolic representations (Harnad, 1990; Bickhard, 1993; Pfeifer
& Scheier, 1999; Ziemke, 2001). Further associations between symbols are also
possible, but ultimately their representational content will be grounded in the
sensorimotor states associated with them.

These facts seem to confirm an interactivist-constructivist view of cognition:
representations depend on the interaction of the cognitive agent with the ex-
ternal environment and are constructed according to his individual history of
interactions. Previous experiences induce long term changes in the synaptic
connectivity, and thus each perception is influenced by the past. Each agent
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thus has a different ontology of the world, the differences being attenuated only
by genetically induced similarities between bodies, commonality of the environ-
ments and by communication.

Motor capability is of the utmost importance for the possibility of represen-
tation for the cognitive agent himself (in contrast to the representation for the
user and designer, as in classical symbol-based artificial intelligence). Bickhard
(1993) argues on theoretical grounds that genuine representational content can
be generated only by an embodied, action capable, goal directed agent. This
content is in fact the potentialities for action activated by the current perceptual
input and by the internal state of an agent (which correspond to the “behav-
ioral possibilities” of Tolman, 1932, and to the “affordances” of Gibson, 1979).
In robotics, the importance of sensorimotor coordination was demonstrated for
solving the problems that appear in information processing approaches (Pfeifer
& Scheier, 1999; Steels & Brooks, 1995).

In the primate brain, the main locus of integration between the perceptual
and the motor pathways is the prefrontal cortex, which is considered essential
for certain types of memory, but also for planning, initiation of action, and
creativity (Fuster, 1995). On one hand, associations between perceptual and
sensorimotor networks capture part of the environment structure, together with
the structure that may be detected from a static sensorial input or from the
temporal changes of sensorial input. On the other hand, mutual activations
between these networks may allow planning of actions by mental simulation
and the prediction of results. For example, it was experimentally shown that
visuomotor anticipation—the prediction of the visual consequences of a future
motor action—is likely to be also the mechanism that drives mental rotation
(Wexler, Kosslyn, & Berthoz, 1998). It is thus possible for the cognitive agent
to internally simulate and predict the evolution of the environment in reaction
to a given action or to a chain of actions. Causality may also be represented,
alternatively, by direct associations between cause and result, without temporal
continuity.

2.3 A cognitive model of science

We are now close to introducing science in this picture. The technological
breakthroughs made possible by science in the last few centuries are relatively
recent on evolutionary timescales. The cognitive mechanisms that allow us to do
science could not be favored by evolution for science itself. Those mechanisms
must thus be the same as those involved in more mundane, though evolutionary
adaptive, cognitive processes (Nersessian, 1992; Peschl, 1999, 2001). Some of
these mechanisms are:

• Causality detection and mental simulation. Repeated associations be-
tween actions and perceptions of the results, or between evolution in time
of perceptions, may yield permanent associations under the form of causal-
ity relations. Further, once these causalities are learned, one may mentally
simulate chains of actions and their causally related results to construct
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plans of actions and predict results of these plans. This is an adaptive
mechanism, which may be found also in animals, and which serves in sci-
ence as a basis for causality detection and the formulation of predictions.
Computational modeling of simulation and prediction based on sensorimo-
tor experience is an active field of research (Jirenhed, Hesslow, & Ziemke,
2001; Stojanov, 2001; MacDorman et al., 2000; Clark, 2001).

• Coherence detection. When executing a mentally simulated plan, the
result may or may not be the same as what was planned. It is adaptive
for the agent to evaluate the coherence of the predicted and actual result
and to consequently enforce the causal associations used in the plan, or
alternatively to loose them, or to explain the result with an alternative
causal chain.

• Projective reasoning. This comprises the type of reasoning used for the
understanding and generation of similes, analogies, metaphors and models.
It may be considered a “projection” of the structure of a source domain on
a target domain (Indurkhya, 1992). While a definite, biologically plausi-
ble model of this phenomenon remains to be developed, we may speculate
that it arises from simultaneous activation of the neural networks acti-
vated with the source and target domain. The common features of the
two domains are revealed, if there are any. If the target domain has lit-
tle sensorimotor structure associated with it, the structure of the source
domain will dominate the conceptualization of the target. However, an
asymmetry between the source and the target domain always exists during
a metaphor or an analogy, and a mechanism that accounts for it has to
be determined. Emergent capability for projective reasoning should be an
important test for every model of human knowledge representation.

Reasoning by analogy is also an adaptive mechanism, as it may suggest
ways to deal with new situations, based on experience acquired with pre-
vious situations. While nonhuman primates can successfully reason ana-
logically after training only, young children do it naturally (Holyoak &
Thagard, 1996) and have no problems understanding metaphors.

• Abstraction. Abstraction implies extraction of common sensorimotor struc-
ture and may be related to categorization, which is easily obtained with
neural networks. Another type of abstraction is related to the schematic-
ity of concepts (Barsalou, 1999), which is implicitly realized if the concepts
are grounded in distributed neural networks.

• Symbolic association. This capability may have evolved for communica-
tion, which is also an adaptive mechanism.

• Subitizing. It was shown that newborns and some animals are capable
to precisely and instantly discriminate (without counting) between small
quantities, up to numbers of the order of 4 or 5 (Wynn, 1993; Dehaene,
1997). The numerosity of greater quantities can be also imprecisely esti-
mated by animals, the variability being proportional with the magnitude
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(Gallistel & Gelman, 2000). This is also an adaptive mechanism, which
may be used to bootstrap the understanding of numbers. Subitizing was
simulated with connectionist models (Dehaene & Changeux, 1993).

Out of these mechanisms, the most important is probably the projective rea-
soning, as it allows the formation of theories and the reasoning about domains
of reality where there is no direct sensorimotor access. Through projective rea-
soning, the structure of a (source) domain, learned by sensorimotor interaction
with it, is projected to a different (target) domain. If the projection is coherent
with the target domain, it may allow predictions, through simulations that fol-
low the sensorimotor associations in the source domain. Moreover, the source
domain can induce a different structure in the target domain, thus inducing a
creative conceptualization of this domain (Indurkhya, 1992).

For example, we may know that if we put a cup of water in the fridge, or
if we put it outside in the winter, it will transform into ice. A sensorimotor
conceptualization of this target domain would involve associations between the
perception of cold, visual and tactile perceptions of water and ice, the motor
actions involved in the experiment, other associations with previous encoun-
ters with water and ice, and so on. However, we may also think about this
phenomenon in the terms of the molecular structure of water: the solidification
would thus be seen as a change in the movement of the molecules. The source do-
main would be here spatial perception (we would imagine the molecules ranged
orderly in three dimensional space) and the sensorimotor interactions with ob-
jects, which serve as a source for the conceptualization of the molecules. The
sensorimotor grounding of the source domain is thus different than the one of
the target domain, and through projection it imposes a new conceptualization
of water and ice.

The mechanism of projective reasoning may explain also the incommensu-
rability of different paradigms (Kuhn, 1962). If in different paradigms there
are different source domains that structure the target domain, and if there are
no similarities between the different source domains that could be abstracted,
there is simply no way to reconcile the two views: they are simply different and
activate different neural networks. Projective reasoning also introduces an extra
degree of variability in the ontology of the world, which has special importance
in science: the ontology not only depends on the experiential history of the
cognitive agent, but also on which sensorimotor domain it is grounded on, and
in which way.

Abstraction is another important cognitive mechanism used in science. For
example, the concept of number is abstracted from the manipulation and con-
struction of objects, measurement of linear dimensions and quantities, and
movement on a path (Lakoff & Nunez, 2000). They are several different sensori-
motor domains, but they have a certain common structure that is abstracted in
the concept of number. This structure is also associated with subitizing mecha-
nisms, counting, and the different forms of symbolic representation of numbers
(Dehaene, 2000; Pesenti, Thioux, Seron, & Volder, 2000; Dehaene, 1992; De-
haene & Cohen, 1995).
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In general, the structure of a source domain has a certain plasticity; some
new associations are added, and some older associations are inhibited, after the
application in a target domain. This modified structure may be abstracted,
or restructured with a projection from another domain, in a more and more
elaborated construction that eventually leads to the creation and understanding
of modern scientific concepts.

Science is thus the process of selecting source domains and adapting their
structure, initially acquired from sensorimotor processes, such as the resulting
structure is coherent with the structure of a certain domain of the environment
where is no direct sensorimotor access, or where the sensorimotor generated
structure is not rich enough. The projected structure of the source domain
allows mental simulations, which yield predictions in the target domain.

3 Limitations of human science

Human scientific concepts thus crucially depend on human sensorimotor capa-
bilities, given by the human body. The limited range of these sensorimotor
capabilities thus fundamentally limits the class of abstract concepts, including
scientific concepts, that a human can understand and use. The animal world ex-
emplifies some biologically implemented sensorial capabilities that are beyond
human experience, such as space perception through sonar-like interactions,
magnetoreception and electroreception (Hughes, 1999). Presumably, if we had
these perceptual pathways in addition to our current ones, theories about waves
and electromagnetism would have been much simpler to generate and acquire,
and much closer to our intuition.

Artifacts obtained with current technologies may extend further the domain,
spectral range, precision and intensity of receptors and effectors. Measurement
instruments that use those enhanced sensors and effectors are routinely used
in science. Via transductors, the signals can be perceived by the human sen-
sorimotor apparatus, and human movements can be translated to other types
of actions, thus leading to novel sensorimotor couplings, which may associate
an extra sensorimotor grounding with the theories. For example, it was argued
that tools extend action and perception capabilities (Hirose, 2002). The senso-
rimotor contingencies generated by the use of tools and instruments integrate
smoothly, after training, with the sensorimotor contingencies of our own body
(O’Regan & Noe, 2001; Stojanov & Gerbino, 1999).

However, current scientific theories constrain the design of the experimental
apparatus, and the output of the measurement instruments has to be accessible
to human sensors. The expansion of this productive cycle, from theories to new
sensorimotor groundings and back, thus cannot fully escape the limitations of
human body.

Other limitations of human science may come from limits of short-term mem-
ory and slow reasoning performance (Riegler, 1998). General limitations of
human cognition were also discussed by McGinn (1994).
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4 Artificial science

4.1 Introducing artificial scientists

Having reviewed the cognitive capabilities needed for science, it is naturally to
ask if it is possible to implement them in artificial cognitive agents. It seems
that there is, in principle, no impediment for such agents to develop science—
artificial science.

As discussed in Section 2.3, they would have to be embodied and to have both
sensors and effectors. They will conceptualize on their own their environment.
At first, this conceptualization will be through sensorimotor interaction. Later,
these sensorimotor structures generated for some domains of the environment
may be projected on other domains. As human science has shown, if the struc-
ture of the sensorimotor data set is rich enough, it may be coherent with other
structures from other parts of the environment. We may ensure this emergent
phenomenon in the artificial scientists by giving them access to a complex envi-
ronment and to a wide range of sensors and effectors. The control apparatus of
the agents, which would probably be implemented in artificial neural networks,
will have to implement causality detection, internal simulation, abstraction, pro-
jective reasoning and eventually symbolic association. In biological agents, the
need for coherence is imposed by their need for survival: a lack of coherence
may result in injuries or death. In the artificial agents, the goal may be simply
to maximize the coherence and the diversity of their predictions. Alternatively,
their goal may be to conceive and later build technological applications of their
science. In this way, they may generate technological innovations.

For example, with the recent advent of nanotechnology, cognitive agents
could be build that would have direct perceptual access to quantum phenom-
ena. Quantum mechanics would then be at least as easy to understand for them
as classical mechanics is for humans. Moreover, it is possible that their concep-
tion of quantum mechanics would be much simpler than the conception that
humans painfully acquire through an elaborate construction from an unadapted
grounding. This new way of conceiving quantum phenomena may lead to novel
applications.

In general, having a different embodiment, the artificial agents will have
access to different classes of concepts than the one available in human science.
The science generated by artificial agents will thus escape the limits imposed
by the human body.

Once enough of the structure of the environment is acquired through sen-
sorimotor interaction, the artificial scientist could also continue the scientific
process of searching coherences “offline”, without permanent interaction with
the environment.
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4.2 Communication between humans and artificial scien-
tists

As in any other communication between two agents with different types of bod-
ies, the communication between humans and the artificial scientists may prove
difficult. We will not be able to understand in their entirety the conceptual-
izations of the artificial agents. Understanding an utterance means an internal
simulation involving the sensorimotor significants of the communicated sym-
bols, previously learned by association. As the sensorimotor groundings of the
agents are different than ours, there will be an important loss of information in
the communication between the two parties. The situation may be different if
the environment and the sensorimotor capabilities of the agents are moderately
similar to the human ones.

4.3 Artificial mathematics

Many results point out that the groundings of human mathematics are mainly
the conceptualization of space and objects. A brain imagery study (Dehaene,
Spelke, Pinel, Stanescu, & Tsivkin, 1999) has shown that arithmetic uses bilat-
eral areas of the parietal lobes involved in visuo-spatial processing, for estimation
of numerical magnitudes, besides part of the brain involved in word association,
for the addition tables. Lakoff and Nunez (1999, 2000) have theoretically stud-
ied the embodiment of the mathematical concepts. Their results also point to
the (active) perception of space and objects as the grounding of mathemat-
ics. Many psychological experiments have shown a strong correlation between
spatial abilities and mathematical and scientific abilities (Siemankowski and
MacKnight, 1971, Poole and Stanley, 1972, Bishop, 1973, Guay and MacDaniel,
1977, Mitchelmore, 1980, Pallrand and Seeber, 1984). It seems thus that an
artificial agent that will acquire an accurate conceptualization of space and ob-
ject perception and manipulation, through sensorimotor interaction, and which
will also have symbolic capabilities, will be able to understand and generate
mathematics, and eventually, later, classical mechanics.

There already exist many neuroscience results about space and object per-
ception, as they may be collected also from direct brain recordings from animals.
They may guide the realization of the artificial mathematician. The discreteness
of mathematics, based on the discreteness of objects, may ease the communica-
tion between the agent and humans. The results of human mathematics may be
communicated to the artificial mathematician, and at its turn it may provide
us its innovative results. Finally, the result would be an artifact that would be
able to master the whole human mathematics and continuously generate new
mathematical results (which yields the question, maybe senseless until now, if
interesting mathematics could ever be complete, or infinitely new important
results may be generated). The artificial mathematician will be able to escape
the limits of Gödel’s theorem, as a human mathematician does, because its
demonstrations will not be limited to the use of a single grounding. Through
projective reasoning, it will be able to change groundings, and use results from
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a grounding in different ones, as a human does.

4.4 Comparison with previous approaches

There is an important volume of work in artificial intelligence dedicated to
the computational discovery of new scientific knowledge. Some of this work
was successful and concluded with publications in speciality journals of the
scientific results discovered by the programs (for reviews, see Langley, 2000,
Langley, 1998, Colton and Steel, 1999, Valdes-Perez, 1999, Langley et al., 1993).
However, this work is only superficially similar with the approach proposed here.
In general, previous approaches to machine discovery or automated science were
concerned with clustering, searching of qualitative and quantitative laws, and
formulation of models, always using human provided data. It is up to the
developer of the automated discovery program to choose a problem formulation
adapted to the input data, and also to choose a representation for the data
fed to the program. Often, the input data is preprocessed and filtered by the
developer, and the developer manipulates the program algorithm to modulate
its performance for certain inputs (Langley, 2000).

In most cases, the program has no effectors and has no access to the envi-
ronmental phenomena studied, other than the preprocessed data. An exception
is a project of closed-loop scientific discovery, where experiments are planned
automatically and carried out by robots (Bryant et al., 2001); that paper also
introduces the term “artificial scientist”. However, in all cases the ontology of
the world, as seen by the program carrying out the automatic scientific discovery
work, is fixed by its human developer.

In contrast, the approach presented here suggests that the most interesting
fact about doing science with robots is that they are able to come up with novel
ontologies of the world, by virtue of having an embodiment different than the
human one. This is why they should have both perceptual and effector access
to the phenomena they study, and the capability to conceptualize on their own
the environment, according to their sensorimotor affordances.

5 Conclusion

The paper presented a cognitive model of science and a blueprint for artificial
scientists. While they are sometimes speculative, they open a research direc-
tion that may finally yield important technological applications. Results from
neuroscience, artificial life and robotics accumulate at a fast rate, and may soon
prove that the construction of an artificial mathematician is a question of years.
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