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Abstract

This paper reviews the current state of the art in the research concerning the
development of autonomous artificial intelligent agents. First, the meaning
of specific terms, like agency, automaticity, autonomy, embodiment, situat-
edness, and intelligence, are discussed in the context of this domain. The
motivations for conducting research in this area are then exposed. We focus,
in particular, on the importance of autonomous embodied agents as support
for genuine artificial intelligence. Several principles that should guide au-
tonomous agent research are reviewed. Of particular importance are the em-
bodiment and situatedness of the agent, the principle of sensorimotor coor-
dination, and the need for epigenetic development and learning capabilities.
They ensure the adaptability, flexibility and robustness of the agent. Several
design and evaluation considerations are then discussed. Four approaches to
the design of autonomous agents—the subsumption architecture, evolution-
ary methods, biologically-inspired methods and collective approaches—are
presented and illustrated with examples. Finally, a brief discussion men-
tions the possible role of autonomous agents as a framework for the study
of computational applications of the far-from-equilibrium systems theory.
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1 Introduction

Autonomous intelligent agent research is a domain situated at the forefront
of artificial intelligence. As shown below, it was argued that genuine in-
telligence can emerge only in embodied, situated cognitive agents. It is a
highly interdisciplinary research area, connecting results from theoretical
cognitive science, neural networks, evolutionary computation, neuroscience,
and engineering. Besides its scientific importance, there are also important
applications of this domain in the development of robots used in industry,
defense and entertainment.

We will first attempt to delimit the scope covered by the term “au-
tonomous artificial agent”. The scientific importance of the study of em-
bodied agents will then be stressed. The paper will continue with the pre-
sentation of the principles used in the design of artificial autonomous agents.
Design and evaluation considerations will be also discussed. Several design
methods will be then illustrated. Finally, we will briefly discuss the possible
role of autonomous agents as a framework for the study of computational
applications of the theory of far-from-equilibrium systems.

2 What is an autonomous intelligent agent?

Agency, autonomy, and intelligence are notions that are all fuzzy and hard
to define. Also, agency is tightly connected to qualities like autonomy, situ-
atedness, and embodiment. Most authors refrain to give precise definitions,
as such definitions are inevitably either too extended or too narrow. For
example, Russell and Norvig (1995) consider: “The notion of an agent is
meant to be a tool for analyzing systems, not an absolute characterization
that divides the world into agents and non-agents.” Moreover, the different
definitions available in the literature are often not consistent with the others.

Without attempting to explain precisely these terms, we will outline here
their meaning, in order to delineate the scope of this paper.

2.1 Agency, automaticity, autonomy

We generally consider humans and most other animals as being agents. Sci-
entists and engineers have also built robots, systems and software programs
that can be considered to be artificial agents. But what really distinguishes
an agent from other artificial systems?

Luc Steels (1995), a preeminent artificial intelligence researcher, consid-
ers that the essence of agency is that “an agent can control to some extent
its own destiny”. This requires automaticity—the agent to have mechanisms
that allow the agent to sense the environment and act upon it and do not
require the intervention of other agents to be executed. A thermostat or a
virus can be thus considered to be an agent.
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Autonomy is a characteristic that enhances the viability of an agent in
a dynamic environment. For autonomous agents, “the basis of self-steering
originates (at least partly) from the agent’s own capacity to form and adapt
its principles of behavior. Moreover, the process of building up or adapting
competence is something that takes place while the agent is operating in
the environment” (Steels, 1995). Autonomy requires automaticity, but goes
beyond it, implying some adaptability. However, autonomy is a matter of
degree, not a clear cut property (Smithers, 1995; Steels, 1995). Most animals
and some robots can be considered autonomous agents.

Other authors consider that agents are implicitly autonomous. In a
study seeking to draw the distinction between software agents and other
software systems, Franklin and Graesser (1996) have made a short survey of
the meaning of “agent” in the computer science and artificial intelligence lit-
erature. In the papers surveyed there, agency is considered to be inseparable
from autonomy.

As a conclusion their survey, Franklin and Graesser attempt a definition:
“An autonomous agent is a system situated within and a part of an envi-
ronment that senses that environment and acts on it, over time, in pursuit
of its own agenda and so as to effect what it senses in the future.”

Ordinary computer applications, such as an accounting program, could
be considered to sense the world via their input and act on it via their
output, but they are considered not to be agents because their output would
not normally effect on what it senses later. All software agents are computer
programs, but not all programs are agents (Franklin & Graesser, 1996).

Agents are different from the objects in object-oriented computer pro-
grams by their autonomy and flexibility, and by having their own control
structure. They are also different from the expert systems of classical arti-
ficial intelligence by interacting directly with an environment, and not just
processing human-provided symbols, and also by their autonomous learning
(Iantovics & Dumitrescu, in press).

Pattie Maes from MIT Media Lab, one of the pioneers of agent research,
also defines artificial autonomous agents (Maes, 1995), as “computational
systems that inhabit some complex dynamic environment, sense and act
autonomously in this environment, and by doing so realize a set of goals or
tasks for which they are designed.”

2.2 Situatedness

From the definitions above, situatedness—the quality of a system of being
situated in an environment and interacting with it—seems to be regarded
as an implicit property of most agents.
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2.3 Embodiment

Embodiment is an important quality of many autonomous agents. It refers
to their property of having a body that interacts with the surrounding en-
vironment. This property is important for their cognitive capabilities, as
we will see below. While this generally refers to a real physical body, like
those of animals and robots, several studies (Quick, Dautenhahn, Nehaniv,
& Roberts, 1999; Riegler, 2002; Oka et al., 2001) have argued that the im-
portance of embodiment is not necessarily given by materiality, but by its
special dynamic relation with the environment. A body can both be influ-
enced by the environment and act on it. Some of its actions can change the
environment, thus changing the influence of the environment over it, in a
closed loop structural coupling. This can also happen in environments other
than the material world, such as computational ones. The environment can
be a simulated physical environment, or a genuinely computational one, such
as the internet or an operating system. Embodiment is thus defined extend-
edly by Quick et al. (1999): “A system X is embodied in an environment
E if perturbatory channels exist between the two. That is, X is embodied
in E if for every time t at which both X and E exist, some subset of E’s
possible states have the capacity to perturb X’s state, and some subset of
X’s possible states have the capacity to perturb E’s state.” This is closely
related to the biologically inspired idea of structural coupling from the work
of Maturana and Varela (1987).

Ziemke (2001a, 2001b) also discusses other forms of embodiment: “or-
ganismoid” embodiment, i.e. organism-like bodily form (e.g., humanoid
robots), and the organismic embodiment of autopoietic, living systems. He
also notes that embodiment may be considered a historical quality, in the
sense that systems may not only be structurally coupled to their environ-
ment in the present, but that their embodiment is in fact a result or reflection
of a history of agent-environment interaction. In our interpretation of the
term, embodiment must be historical, but not necessarily organismoid nor
organismic.

Embodiment is tightly connected to situatedness—a body is not suffi-
cient for embodiment, if it is not situated in an environment. Moreover,
the body must be adapted to the environment, in order to have a mutual
interaction. In this interpretation, a robot standing idle on a shelf, a robot
having only visual sensors but inhabiting an environment without light, or
a robot which does not perceive its environment, acting according to a pre-
defined plan or remotely controlled, are not considered to be embodied nor
situated.
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2.4 Intelligence

Intelligence is another hard to define notion, and even a controversial one.
Various authors consider it to be an ability to learn from experience, to
adapt to new situations and changes in the environment, or to carry on
abstract thinking (Pfeifer & Scheier, 1999). The MIT Encyclopedia of Cog-
nitive Science states: “An intelligent agent is a device that interacts with its
environment in flexible, goal-directed ways, recognizing important states of
the environment and acting to achieve desired results” (Rosenschein, 1999).

However, in practice intelligence is a relative attribute, and evaluated in
connection with human capabilities. For example, we would not normally
consider a rat being intelligent (implying a comparison to a human), but we
would recognize it to be more intelligent than a cockroach.

In agreement to these considerations, in this paper we would consider an
agent as being intelligent if it is capable of performing non-trivial, purposeful
behavior that adapts to changes in the environment. However, the evalua-
tion of the behavior is arbitrarily done by a human and thus intelligence is
a subjectively assigned property.

3 Reasons for studying artificial autonomous
agents

3.1 Applications

Many artificial agents are developed for performing physical tasks that
directly serve human purposes. Scientists and engineers are trying to
build robots that can relieve people of dangerous, physically demanding,
or monotonous jobs. Many robots automate work in the manufacturing in-
dustries; however, they are usually not autonomous nor intelligent. Other
robots, with various degrees of autonomy, are used for exploring remote or
inaccessible locations. For example, they might investigate distant plan-
ets (like the Mars Sojourner1) or the ocean floor, they might inspect oil
pipelines (like iRobot’s MicroRig system2) or sewer pipes (like MAKRO;
Kolesnik & Streich, 2002). Their autonomy may eliminate the need for ex-
pensive remote control equipment (like kilometers of cable and machines
for manipulating the cable, in the case of pipe or sewer inspection), or for
human surveillance operators. Autonomy may also protect them in the case
of unexpected events, when the remote controlling operator is not capable
to respond fast enough to these events due to delays in communication, like
in planetary exploration. Research is being carried for creating robots that
can rescue people from crushed buildings or for demining operations.

1http://mars.jpl.nasa.gov/MPF/rover/sojourner.html
2http://www.irobot.com/industrial/microrig.asp
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Consumer robotics is estimated as a huge market, especially in the con-
text of the increasing number of aged people in the developed countries.
iRobot’s Roomba3, launched in 2002, is the first consumer automatic robotic
vacuum cleaner.

Artificial intelligent agents are also used for entertainment, as virtual
companions or in movies and graphics. For example, the computer game
Creatures4 features artificial characters that grow, learn from the user, and
develop their own personality. The Sony Aibo robotic dog5 behaves like an
artificial pet, entertaining their owners and even emotionally attaching to
them, through their interactive behavior. Artificially evolved neural network
controllers for computer simulated fish were used for generating realistic
computer graphics (Terzopoulos, 1999).

There are thus important possible applications for autonomous intelli-
gent agents. However, the degree of autonomy and intelligence of current
artificial agents is quite low, in comparison with biological ones, like mam-
mals. Research is being carried for improving the autonomy and intelligence
of artificial agents. This paper will present next some principles, many of
which are biologically inspired, that should be followed for developing more
competent artificial intelligent agents (Section 4).

3.2 Autonomous agents as support for genuine artificial in-
telligence

Autonomous agents research is not only interesting for its immediate appli-
cations for physical tasks, but also for the more general purpose of developing
genuine artificial intelligence. As we will show next, it is currently consid-
ered that genuine intelligence can emerge only in situated, embodied agents,
which can interact directly with an environment.

3.2.1 Classical artificial intelligence

At the beginning of these disciplines, starting with the 50’s, most of the
researchers in artificial intelligence (AI) and even in cognitive science, in
general, considered reasoning a disembodied process. These first years of
cognitive studies were particularly marked by the influence of the computer,
that was a relatively new technology at that time. Intelligent behavior was
often viewed as computation. It was thought that human intelligence is
achieved by symbolizing external and internal situations and events and
by manipulating these symbols according to syntactic rules (Fodor, 1975;
Pylyshyn, 1980; Simon & Kaplan, 1989). The supporters of this so-called
cognitivist or functionalist approach sustained that once the good algorithms

3http://www.roombavac.com
4http://www.creatures3.com
5http://www.aibo.com
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and ways of representing knowledge in symbols would be found, intelligence
can be implemented in any kind of computing machines, like computer soft-
ware, regardless of the hardware implementation. In this framework, the
body of the cognitive agent is not regarded to have a particular relevance:
it may provide symbolic information for input, or act out the result of the
computation, like a peripheral device, or it may be lacking at all. The only
important process is considered to be the symbol manipulation in the central
processing unit.

Until the 80’s, most of the models in cognitive science and cognitive
psychology were inspired by the functioning of the computer and phrased
in computer science and information processing terminology; some of these
models continue to be backed today by their supporters. Representational
structures such as feature lists, schemata and frames (knowledge structures
that contain fixed structural information, with slots that accept a range of
values), semantic networks (lists and trees representing connections between
words) and production systems (a set of condition-action pairs used as rules
in the execution of actions) were used to explain and simulate on computers
cognitive processes (Anderson, 1993; Newell, 1990). It was proposed that
problem solving is accomplished by humans through representing achievable
situations in a branching tree and then searching in this problem space
(Newell & Simon, 1972). It was also proposed that objects are recognized
by by analysis of discrete features or by decomposing them in primitive
geometrical components (Biederman, 1987).

In robotics, the efforts were directed towards building internal models of
the world, on which the program could operate to produce a plan of action
for the robot. Perception, planning and action were performed serially.
Perception updated the state of the internal model, which was predefined by
the designer of the robot. Because of this, perception recovers predetermined
properties of the environment, rather than exploring it. The environments in
which robots evolved were often fixed, otherwise the internal model would
have failed to represent reality. Planning was achieved through symbolic
manipulation in the internal world model. A classical example of this sense-
model-plan-act (SMPA) approach (Brooks, 1995, p. 28) is the robot Shakey
built in the 60’s at the Stanford Research Institute6.

3.2.2 Limits of classical AI

The methods of this so-called Good Old Fashioned Artificial Intelligence
(GOFAI) had some impressive successes in certain domains; however, these
successes are limited. Based on those methods, programs were built that
solved problems and proved theorems from logic and geometry. However,
they depend on humans for converting the problem in a representation suit-
able for them and are confined to domains where knowledge can be easily

6http://www.sri.com/technology/shakey.html
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formalized. Expert systems are widely used in the industry for the planning
of the processes, but once the situation gets out of their ontology, they have
no capability of dealing with it. One of the best known expert systems is
MYCIN (Shortliffe, 1976), a program for advising physicians on treating
bacterial infections of the blood and meningitis. An example of MYCIN’s
limitations is to tell MYCIN that that Cholerae Vibrio was detected in the
patient’s intestines. The system will recommend two weeks of tetracycline
and nothing else. This would probably kill the bacteria, but most likely the
patient will be dead of cholera long before the two weeks. However, the
physician will presumably know that the diarrhea has to be treated as well
(McCarthy, 1984; see also Brooks, 1991).

The defeat of the world chess champion, Garry Kasparov, by the Deep
Blue computer in 1997 was widely publicized7. Another expert system, a
recent computer program built on the FORR architecture (Epstein, 1994) is
capable of learning and successfully playing several types of games. However,
a program that would beat a professional go player is still yet to be built,
because the search space is much bigger in go than in other games8. This is
a good example where traditional methods fail.

Research in Natural Language Processing have led to programs that are
able to search and summarize text, to translate automatically, and to chat
with a human partner. The state of the art programs in this field can be
easily tested on the web9: neither the word-by-word translation, nor the
grammatical analysis of the phrase structure are enough to understand nat-
ural language. These problems point to the fact that understanding of the
semantics and information about the context are crucial. The commercial
Cyc project10, still under development, struggled for more than ten years
to build a huge semantic net that would cover the commonsense knowledge
of an ordinary human. In spite of the huge quantity of information fed into
computers, the results are well below expectations.

In general, most intuitive human knowledge still resists formalization,
including that involved in comprehending simple stories or simple physical
situations. Our surrounding environment has a much too complex structure,
that cannot be captured by a single ontology. This follows not only from
theoretical considerations (Popper, 1959), but was also shown by modern
physics (Feynman, 1965 / 1992, chap. 7). Classical AI systems are usually
brittle, in the sense that they are unable to adapt to situations unforeseen
by their programmer, to generalize, and lack tolerance to noise and fault
tolerance. Their preprogrammed nature prevents them to display creative
behavior. Many day-to-day human problems seem to have unmanageable

7http://www.chess.ibm.com/
8http://www.intelligentgo.org/en/computer-go/overview.html
9Babelfish, automatic translator: http://babelfish.altavista.com; chat bots:

http://www.botspot.com/search/s-chat.htm
10http://www.cyc.com

7

http://www.chess.ibm.com/
http://www.intelligentgo.org/en/computer-go/overview.html
http://babelfish.altavista.com
http://www.botspot.com/search/s-chat.htm
http://www.cyc.com


computational complexities for systems designed in the framework of classic
artificial intelligence. There is little direct evidence that symbol systems
underlie human cognition (Barsalou, 1999), although it was proposed at
times that the human brain functions under similar principles.

3.2.3 Fundamental problems of classical AI

Besides their lack of biological plausibility and the practical problems in im-
plementing them as intelligent systems, disembodied symbol systems exhibit
more fundamental problems.

The symbol grounding problem (Harnad, 1990) refers to the fact that,
in classical symbolic systems, there is nothing to give meaning to the ma-
nipulated symbols, for the systems that perform this manipulation. These
symbols have meaning (representational content) for external observers—
the human designer, programmer or user of these systems, but not for the
systems themselves. Bickhard (1993) argues on theoretical grounds that gen-
uine representational content can emerge only in an embodied, goal directed
agent, that is able to perceive its environment and interact with it. Repre-
sentation of different environmental situations emerges if the agent is able
to distinguish different potentialities for action in these situations, related
to its goal. This theoretical framework is substantiated by psychological
and other experimental evidence. This shows that human experience occurs
when the organism masters the laws of sensorimotor contingency (O’Regan
& Noe, in press), i.e. anticipates the changes in perception that may be
produced by potential actions.

The frame of reference problem refers to the confusion between the terms
of the description of intelligent behavior by an observer, and the real mech-
anism that generates this behavior; and between the perspective of an ob-
server and the perspective of the intelligent agent itself (Pfeifer & Scheier,
1999, pp. 82, 111–117). For example, if a human observes an agent perform-
ing a certain task, this doesn’t automatically imply that there is an internal
representation of the task within the agent. Knowledge level descriptions
constitute an observer’s model, not structures or mechanisms inside the
agent (Clancey, 1995, p. 228). Moreover, the segmentation of behavior by
a human observer is arbitrary; and the behavior of an agent is always the
result of a system-environment interaction. As a result, the observed char-
acteristics of a particular behavior do not always indicate accurately the
complexity or the nature of the underlying mechanisms.

An illustration of this fallacy may be given by some simple vehicles with
two sensors and two wheels powered by independent motors, and very simple
wiring between the sensors and the motors (Braitenberg vehicles; Braiten-
berg, 1984). If the sensors have nonlinear characteristics, these vehicles can
exhibit very complex behaviors. Human observers may attribute them will
or personality; however, they act according to extremely simple rules.
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In neural systems, the activation of a neuron correlated with an observ-
able feature of the environment does not necessarily mean that the neuron
codes for, or represent, that feature. For example, in a classic experiment,
Lehky and Sejnowski (1988) trained a network with backpropagation to ex-
tract height information from shading, as presented in pictures of smooth
3D objects. In an analysis of the resulted network, they observed neurons
that reacted optimally to bars and edges, like in the mammalian primary
visual cortex. However, this particular network has never experienced bars
nor edges during training (Churchland & Sejnowski, 1994, pp. 183–188).
Also, many evolved neural networks embedded in artificial agents that suc-
cessfully perform the desired tasks are difficult to be functionally analyzed
(Ruppin, 2002). This questions the attempts to understand biological neural
networks in terms of representations, as many neuroscience studies still try.
Simple as it is, the frame of reference problem is still ignored even today by
many researchers in cognitive science.

From a designer point of view, the solution for achieving a desired be-
havior in an artificial agent may not necessarily be related to the terms in
which the problem is described (Hallam, 1995, pp. 220–221). Many inter-
esting behaviors of biological and artificial agents appear through emergence
and self-organization (see also Section 4.3).

More detailed critiques of symbol systems and classical AI are articulated
by Bickhard (1993), Barsalou (1999), Pfeifer and Scheier (1999, chap. 3),
Brooks (1991), Steels and Brooks (1995).

3.2.4 Embodiment as a condition for learning and adaptability

A genuinely intelligent system should be adaptive, flexible, robust: it should
adjust its operation to unexpected changes that influence it, and should be
creative in finding solutions for completing its tasks. We have seen that
preprogrammed symbol systems cannot acquire this flexibility. Developers
cannot predict and code responses for all possible situations. The speed
of current computing systems is still too slow, relative to the huge search
space, for evolutive methods alone to generate generic intelligent systems
(Grand, 1998). Artificial intelligent systems should then develop most of
their cognitive structure by learning and self-organize to arrive at emer-
gent new behaviors; their designers should just implement sensible learning
methods.

We have seen that cognitive systems cannot understand the meaning
of symbols if they are not grounded through association with sensorimotor
interaction. They cannot thus be initially taught through symbolic com-
munication with humans or other agents. As for humans, an environment
may offer to artificial systems a learning framework for the development of
cognitive structures.

For learning, and thus interaction with the environment to be possible,
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the artificial cognitive system has to be able to perceive it and influence it
through effectors, and thus to be embodied and situated.

Studies in developmental neuroscience and robotics have shown that per-
ception, without action, is not sufficient for the development of cognitive
capabilities in animals, or for interesting performance in artificial systems.
For example, in a classical experiment (Held & Hein, 1958), a group of kit-
tens were immobilized in carriage, to which a second group of kittens, who
were able to move around normally, were harnessed. Both groups shared
the same visual experience, but the first group was entirely passive. When
the animals were released after a few weeks of this treatment, the second
group of kittens behaved normally, but those who had been carried around
behaved as if they were blind: they bumped into objects and fell over edges.
This study supports the idea that objects are not seen by the visual extrac-
tion of features, but rather by the visual guidance of virtual action (Varela,
1995, pp. 16-17, Robbins, 2002). Also, research in active vision (Blake &
Yuille, 1992) has shown that artificial vision systems where the cameras are
able to move, orient, focus, etc. give much better results than passive ones
in image processing and recognition problems.

If the artificial system should exhibit self-organization and emergence
of interesting features, the control part has to be a distributed, far from
equilibrium system, formed by a large number of interacting subunits. Ar-
tificial neural networks (ANNs) seem to be suitable for this. The fact that
biological intelligence is physically implemented in networks of neurons also
encourages the use of biologically-inspired ANNs for obtaining artificial in-
telligence.

However, interaction with the environment may offer the cognitive agent
the possibility for associating meaning to symbols, by communicating and
interacting with other agents that also have sensorimotor access to the same
environment (e.g. Steels, Kaplan, McIntyre, & Looveren, 2000; see also
Section 4.12). In contrast to the symbol systems of classical AI, these sym-
bols have meaning for the artificial agent themselves, and are grounded in
perception and action. After the possibility for symbolic communication
emerges, artificial agents may also eventually be taught like this. Teaching
is also possible through imitation or physical guidance in the environment
(e.g. Kozima, Nagakawa, & Yano, 2002; Andry, Gaussier, & Nadel, 2002;
Alissandrakis, Nehaniv, & Dautenhahn, 2001).

3.2.5 Embodied, interactivist-constructivist cognitive science

In general, there is a convergence of results from a wide range of domains
within cognitive science that point to the conclusion that intelligence can
arise only in embodied agents, artificial or biological, and that embodiment
and situatedness also offer a more appropriate framework for the study of
human and animal intelligence. There are theoretical, philosophical and

10



biological arguments (Bickhard, 1993; Varela, Thompson, & Rosch, 1992;
Varela, 1995; Chiel & Beer, 1997; Ziemke, 2001c). In AI, Rodney Brooks,
director of the MIT AI Lab proposed in the early 90’s that representation
based methods should be discontinued, because of the practical problems
of the classical approach (Brooks, 1990, 1991). Research in “nouvelle AI”
should rather deal with building complete systems implemented in robots,
simple at first and then incrementally more intelligent. It was argued that
building embodied cognitive agents is a promising path to attain artificial
intelligence (Steels & Brooks, 1995; Pfeifer & Scheier, 1999), maybe the only
one given the technological capabilities available today.

For humans, it was also argued that even abstract reasoning is grounded
on sensorimotor capabilities (Barsalou, 1999; Indurkhya, 1992; Lakoff &
Nunez, 2000; Florian, 2002). It is believed that imagery and short term
memory share many common neural mechanisms with perception or motor
action (Kosslyn & Thompson, 2000; Fuster, 1995; Jeannerod, 1994, 1999).
Many results point out that the neural correlates of a certain concept, acti-
vated, for example, by a word, are activations of the neural networks that
were also active during the experiences of the person with the significant
of that word (Damasio, 1990; Pulvermuller, 1999; Martin, Ungerleider, &
Haxby, 2000). These facts seem to confirm an interactivist-constructivist
view of cognition: representations depend on the interaction of the cogni-
tive agent with the external environment and are constructed according to
his individual history of interactions.

Autonomous intelligent agent research is thus not only useful for its im-
mediate applications in physical tasks, but also for the longer term goal of
obtaining genuine artificial intelligence. Once appropriate cognitive struc-
tures emerge in embodied agents after learning, and symbolic communica-
tion can be established with them, they may eventually be disconnected
from their bodies. These intelligent agents would eventually be used for
solving problems in more abstract domains like engineering, design, science,
management of complex processes and systems and so on.

3.3 Biological modelling

Another reason for studying autonomous artificial agents is the investigation
of the principles that underlie animal or human behavior. Understanding
how animals work is a problem of “reverse engineering”. Rather than build-
ing something with a certain functional capability, we have something that
already functions and want to figure out how it works. The application of
engineering methodologies seems to be an appropriate and promising ap-
proach, though not easy to implement.

Biorobots are now enabling biologists to understand these complex
animal-environment relationships. They can detect and map sensory signals
at the level of the animal and can measure how the presence and motion
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of the animal affects those signals. This data, coupled with observations of
the animal itself, can lead to very sophisticated hypotheses about what is
causing a behavior and what is shaping it. These hypotheses can be tested
both with the biorobot and with the animal itself. The robot offers several
advantages over the real animal in such studies. The behavior under test
in the robot is not affected by competing, uncontrolled, behaviors. Also,
much more data can be obtained from a robot, compared to an animal, on
its actions, sensory input, and internal states (Webb & Consi, 2001).

For example, robots were built for investigating cricket phonotaxis
(Webb, 1994), navigation of the housefly (Franceschini, Pichon, & Blanes,
1992), ant navigation based on a polarized light compass (Lambrinos et al.,
1997), lobster chemo-orientation, hexapod walking, or human joint attention
behavior (Webb & Consi, 2001).

4 Design principles for autonomous agents

The design of autonomous agents is an active area of research. An estab-
lished theory regarding autonomous intelligent agents does not exist. The
field is relatively young, having gotten out of the influence of classical AI
only in the beginning of the 90’s. There exist, however, several principles
that may guide the design of autonomous agents. Some of the principles
presented here were articulated by Pfeifer and Scheier (1999), who captured
compactly many insights that were usually implicit in the previous research
literature. A few others were not on the list compiled by them, but we felt
that they deserve the same status as the first ones.

These principles are rather idealistic: there exist currently no artificial
agents that implement all of these principles. However, these principles may
guide researchers in the quest of obtaining genuine artificial intelligence.

4.1 The three–constituents principle

Designing autonomous agents always involves three constituents: (1) defi-
nition of the ecological niche, (2) definition of desired behaviors and tasks,
and (3) the design of the agent (Pfeifer & Scheier, 1999, pp. 302–306).

The range of environments that agents may inhabit can exhibit a lot of
variety. No single agent can adapt, both physically and cognitively, to cope
economically with all the possible variations. Biological agents, animals
or plants, are also limited in their adaptability to a specific environmental
niche. A desired ecological niche must thus be established, prior to the
design of the agents.

Given the specific niche, the desired behaviors or tasks to be solved can
be specified, and then the agent may be designed according to these needs.
In some cases, the physical design of the agent is given (for example, if the
robot is bought off-the-shelf), and only the control system can be designed,
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given the desired behaviors. In other cases, there might be a given agent
architecture and the research will consist in the exploration of the emerging
behaviors in a particular ecological niche.

The three constituents are interdependent: the design critically depends
on the desired behaviors and the niche, the possible behaviors are dependent
on the environment and the agent, and the ecological niche where the agent
is viable depends on its structure and on what it does.

4.2 Autonomy, embodiment, situatedness

Ideally, autonomous agents should be able to function with little human
intervention, supervision or instruction. They should be self-sufficient, i.e.
able to sustain themselves over extended periods of time (Pfeifer & Scheier,
1999, p. 306). However, as we previously discussed (Section 2.1), autonomy
is a graded property. In some cases, a high degree of autonomy is not
necessary, if the agent is useful even if it depends on some external support.
For example, even a human manager may need the permanent services of
several assistants for successfully doing his job.

As previously shown (Section 3.2.4), the agent should be embodied and
situated, in order to be able to adapt to the the structure of its environment
and ground his cognitive structures. The body may be as important for
adaptability as the control system (Chiel & Beer, 1997). The embodiment
may be physical or computational (Section 2.3).

4.3 Emergence, self-organization

Emergence is a potential solution to the frame of reference problem (Section
3.2.3), and, more generally, to the problem of generating artificial intelli-
gence. The human designer of an artificial agent would like it to be able
to perform certain tasks. The designer has a certain conceptualization or
description of the desired task. However, he may not always design effi-
ciently the agent according to his view of the task. This was the approach
of classical AI: formalize the problem and then implement a symbolic solu-
tion for it. As we have seen, this leads to brittle, unadapted systems. The
preprogrammed agent will not be able to generate new behaviors that were
not initially implemented, or vary the implemented ones. Moreover, any
conceptualizations of a given process imply a simplification of the reality,
so the designer may not be aware of all relevant issues, except in very sim-
ple environments. His segmentation of behavior is arbitrary. His view of
the task depends on a human perspective, dependent on human goals and
sensorimotor capabilities. The agent may have a different embodiment, and
thus a different perspective of the task. The behavior is usually not entirely
dependent of the agent’s actions, but is the result of the interaction between
the agent and the environment. Further, the symbolic description of the be-
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havior needed for writing the computer program that controls the agent may
result in large distortions of the intended structure, given by the constraints
of the functioning of the computer and the programming conventions.

The solution to these problems is to design the system for emergence:
behavior that is not preprogrammed should result from agent-environment
interaction and from the self-organization of the agent’s control system.
Several principles that give some hints about how this can be accomplished
are presented next.

4.4 Epigenesis, online learning

Epigenesis is a special case of emergence: it is a process through which
increasingly more complex cognitive structures emerge in a system as a re-
sult of interactions with the physical and social environment. The term
was introduced in psychology by Jean Piaget, to refer to such development,
determined primarily by the interaction between the organism and the envi-
ronment, rather than by genes. Psychology still provides empirical findings
and theoretical generalizations that may guide the implementation of artifi-
cial systems capable of epigenesis (Zlatev & Balkenius, 2001).

There are two important characteristics of epigenesis that must be high-
lighted. First, the role of the environmental factors is constructive rather
than being only selective. Many other approaches to the developmental in-
teraction between an agent and environment stress the role of specific input
either in permitting a developmental process to unfold, or in parametrically
selecting a particular variant of development. In neither of these cases does
the environmental information add any higher level of organization to the
existing cognitive structures of the agent. The pathway along which the be-
havior develops, and its terminal structure, are assumed in these approaches
to be predetermined. By contrast, in epigenesis the developmental pathway
and final structure of the behavior that develops are a consequence of both
environmental information and existing information. For example, the de-
velopment of birdsong seems to involve reproduction by imitative learning
rather than selection from amongst pre-established alternatives. Fledglings
not exposed to a model do develop birdsong, but it is impoverished or un-
elaborated relative to that of those individuals developing in a normal en-
vironment in which models are available. The second key characteristic of
epigenesis is that an initially specified developmental envelope or window
specifies an initial behavioral (or perceptual) repertoire that is subsequently
elaborated through experience of a relevant environment (Sinha, 2001).

Enabling artificial agents to epigenetically develop their cognitive struc-
tures may solve the previously mentioned problems of preprogrammed sys-
tems. In this paradigm, the designer of the artificial agent would not have to
program it for specific tasks. A developmental system must be able to learn
tasks that its designers do not know or even cannot predict. New tasks and
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skills would be learned without requiring a redesign of the control system.
To design the control system of the artificial agent, the designer needs only
information about the ecological niche of the agent and about its body. The
designer should focus on self-organization schemes, rather than task-specific
algorithms. Human teachers may affect the developing agent only as a part
of the environment, preferably without interfering with its internal repre-
sentation. Training may be performed by reinforcement learning, imitation
or guidance (Weng et al., 2001; Weng & Zhang, 2002).

Like for humans and animals, artificial agent learning should be “online”,
in real time, not necessarily separated from actual performance. It should
not be limited to pre-specified learning epochs, but continue during the
lifetime of the agent. This would ensure that the agent will adapt in real
time to unexpected changes in the environment, whenever they may arise.

It is also hypothesized that limitations of the sensory and motor sys-
tems, or of the control system, early in the developmental process of the
agents, may make the learning tasks more tractable. The initially immature
resources may facilitate, or even enable, the early stages of learning. Such
initial limitations, followed by maturation, are common in animals. Several
studies regarding learning in neural networks and robots seem to confirm
that this idea is also valid for artificial systems (Lungarella & Berthouze,
2002; Clark & Thornton, 1997).

Several examples of agents built according to epigenetic principles are
given by Balkenius, Zlatev, Kozima, Dautenhahn, and Breazeal (2001),
Prince, Demiris, Marom, Kozima, and Balkenius (2002), Pfeifer et al. (2001,
2001).

4.5 Parallel, loosely coupled processes

Implementing the control system as a collection of parallel, heterogenous,
loosely coupled processes is another principle that constitutes a support
for emergence. The processes run asynchronously and are coupled to the
agent’s sensorimotor apparatus, requiring little or no centralized resources.
An explicit process that controls all the others is unnecessary. The control
is decentralized and distributed. Intelligent behavior may emerge from the
joint dynamics of a number of basic processes, each of which contributes
to the overall function, as the agent interacts with the environment. The
architecture of the control system may develop gradually, with new processes
being added on top of the others, as in biological evolution (Pfeifer & Scheier,
1999, chap. 11).

The brain itself is a massively parallel system, giving support to this
principle. Artificial neural networks are also parallel systems, which are
successfully used for the control of autonomous agents. Another imple-
mentation of this principle is the subsumption, behavior-based architecture
(Brooks, 1986), widely used currently in robotic control, or similar ones.
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The subsumption architecture will be presented in more detail below (Sec-
tion 7.1). Systems constituted from many individual agents, where collective
behavior emerges from local interactions, may be also seen as an implemen-
tation of this principle. Examples of such systems may be societies of ants
or termites; artificial multiagent systems were also built and will be also
discussed below in more detail (Section 7.4).

This principle contrasts to the centralized, sequential approach of clas-
sical AI. The classical systems are not fault tolerant and not robust with
respect to noise: when a module is removed or breaks down, the whole sys-
tem’s functionality will be affected, because of the serial processing. Clas-
sical hierarchical architectures also prevent emergence. Parallel systems are
not affected by these problems.

4.6 Sensorimotor coordination

Perception and action should always be coordinated in artificial agents, as
they are in animals and humans. Their temporal separation in separate
stages, as in the sense-think-act cycle of classical AI, is artificial and pre-
vents the potential emergence of adaptive behaviors from their coordination.
In biological agents, there exists a permanent dynamical recurrent interac-
tion between perception and action, in relation with the environment and
the body and the control system of the agent. Perception guides action, in
interaction with the internal state of the agent. Action may change the in-
ternal state of the agent, and thus influence the internal dynamics induced
by future sensations. Action also changes the perspective of the environ-
ment, as perceived by the agent, influencing thus through the environment
the future sensations.

Cognition, and especially learning, needs not only perceptual, but also
effector capabilities. Several empirical arguments were presented in Section
3.2.4. In another perspective, it is this sensorimotor coupling, mediated
by the body and the environment, that constructs the cognitive structures
(Varela, 1995, pp. 15-16). As seen above, representation and experience
arise out of potentialities for action, innate (discovered through evolution)
or discovered from previous experiences within the environment (Bickhard,
1993; O’Regan & Noe, in press). The cortical substrate of memory is identi-
cal to the connective cortical substrate that sustains perception and action
(Fuster, 1995). Associations between past sensations and actions may offer
a mechanism for anticipating the results of future actions through internal
simulation (Hesslow, 2002) and thus for planning.

It was shown, both in animals and with artificial agents, that action is
very important for categorization and recognition, processes traditionally
conceived as purely perceptual. Mechanisms of sensorimotor coordination
can be used to transform, or re-represent, information structures that are
impossible to predict by means of statistical learning procedures (having
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hidden or marginal regularities) to learnable, predictable information struc-
tures (Pfeifer & Scheier, 1999, chap. 12, Clark & Thornton, 1997).

4.7 Goal directedness

The agent must be goal directed, must have a value system that would
guide its behavior. A value system also modulates the learning process,
either explicitly or implicitly. In an explicit value system, value signals that
modulate learning are generated as consequences of behavior. In an implicit
value system, modulation is achieved by mechanisms that select interactions
with the environment, which will influence the development of the agent
through learning (Pfeifer & Scheier, 1999, chap. 14). Goal directedness is
also a key ingredient for the emergence of representation (Bickhard, 1993).
In biological agents, the implicit goal is the survival of the species and self-
maintenance. Artificial agents are usually built to perform tasks for the
benefit of human users.

In order to start doing something once its starts its existence, the agent
must have some innate (predefined) drives or reflexes that would induce an
exploration of the environment. This exploration may lead to non-trivial
sensorimotor patterns, and as a consequence to self-organization (unsuper-
vised learning). The novel behaviors that emerge may lead to further explo-
ration of the environment.

The self-organizational processes that lead to adaptive behavior should
be reinforced. Some reinforcement may be predefined by the designer of
the agent. Other reinforcement signals may be delivered to the internal
control mechanisms by a user of the system, especially in the early part of
the agent’s interaction with the environment, if this would not prejudice the
long term autonomy of the agent. Reinforcement cues may be also delivered
through the environment, if the agent can relate the cues to its internal
reinforcement system. More supervised learning schemes should be avoided,
as they impose to the agent a human ontology, which finally prevents the
agent’s adaptability. The agent should rather develop its own ontology of the
environment, grounded in the sensorimotor interaction. Reinforcers should
just guide the interaction with the environment, not specify it.

There is a trade-off between specificity and generality of value systems.
If value systems are too specific, the system is not sufficiently flexible: it is
unable to generate behavioral diversity, which may be needed for attaining
a goal in a complex environment. If value systems are too general, they are
of little selectional value and insufficiently constrain the very large space of
possible actions (Pfeifer & Scheier, 1999, chap. 14).

The goal of an agent, as interpreted by an observer of the agent’s behav-
ior, may not necessarily be the goal that the agent is following implicitly.
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4.8 Cheap design

Good designs are cheap and parsimonious. The physics of the agent-
environment interaction and the constraints of the ecological niche should
be exploited, where possible.

An example that illustrates this principle may be a moving robot with
inertia. If it is moving fast, it should turn earlier to avoid obstacles than
if moving slowly, in order to minimize the risk of collisions. Intuitively one
would think that this would require an assessment of the robot’s speed and
distance from the obstacle, and a mechanism to adjust the distance at which
the agent should begin avoidance action. This turns out to be unnecessary
if motion detection is employed instead, as by flies, for example. If collision
detection is based by optic flow (the angular speed relative to the eye or
camera), no internal mechanism for determining speed is needed (Pfeifer &
Scheier, 1999, pp. 435–445).

4.9 Redundancy

An agent has to incorporate redundancy. A redundant control system is
fault tolerant. An implementation as parallel, loosely coupled processes can
easily assimilate redundancy. In relation to the sensory system, the principle
states that an agent’s sensors should have types and positions in such a way
that there is potential overlap in the information that can be acquired from
the different sensory channels. Correlations and associations between the
inputs of different modalities may lead the agent to learn to predict sensory
inputs, or to reduce uncertainty. Correlations can arise because of temporal
coincidence, or may be generated through sensorimotor coordination (Pfeifer
& Scheier, 1999, pp. 446–455).

4.10 Ecological balance

There has to be a balance of the complexity between the agent’s task envi-
ronment, and its sensory, motor, and control system. For example, a very
complicated control system is useless if the agent or the environment are ex-
tremely simple (Pfeifer & Scheier, 1999, pp. 455–463). A much too complex
control system might “overfit” or get stuck in local minima during learning,
thus preventing the generation of robust, truly adaptive behavior. A much
too simple control system, relatively to the complexity of the environment,
may make impossible the adaptation of the agent to the environmental con-
ditions.

4.11 Grounded internal representation

The action an agent performs at some specific moment should not be deter-
mined only externally, based on perceptive input, as in a purely reactive sys-

18



tem, but neither be entirely planned ahead, as in some classical AI systems.
Action should result emergently from the interaction of current perception
with previous action and the internal dynamics of the control system. If the
behavior of the agent is adaptive, it means that there is a congruity between
the performed actions and the the dynamics of the control system, on one
hand, with the structure of the environment, on the other hand. Part of the
structure of the environment is thus reflected, implicitly, in the structure of
the control system. A representation of some environmental situations may
dynamically emerge if the agent is able to distinguish different potentialities
for action in these situations, as determined by its goal (Bickhard & Ritchie,
1983; Bickhard, 1993, 1999, 2000).

The meaning used here of the term representation is the ability of the
agent to include in his decisional process non-trivial considerations about
environmental features not currently accessible to sensorimotor exploration.
This is not necessarily related to their identifiability by an external observer
as particular states of the control system of the agent.

These representations are not imposed by the user or the designer of
the system, but are grounded in the sensorimotor interaction of the agent
with the environment. This type of representation has a meaning to the
cognitive agent itself, and not only to its human observers, as in classical
symbol-based artificial systems.

Memory may be based on the same mechanisms that enable perception
and action, as it is in humans, for example (Fuster, 1995). Regularities and
structural invariance in sensorimotor patterns may then be implicitly inter-
nalized during behavior (Berthouze & Tijsseling, 2001; Robbins, 2002). The
memorized part of the sensorimotor structures that were previously expe-
rienced interacts with current activation patterns. Common structures and
invariants may be implicitly detected by the learning process and reflected in
memory, for example through a quasi-hebbian mechanism. Abstraction and
categorization may thus be based on the same mechanisms that enable per-
ception, action and learning (Robbins, 2002; Indurkhya, 1992). Categories
can emerge as singularities in the continuous flow of sensorimotor data. As
such, categories are not static, imposed representations but transient char-
acteristics of the state space. They are activated as the system is involved in
it. The category is cued by similar instances, which can be a sensory stimu-
lus, some self-driven dynamic exploration, or a performed action (Berthouze
& Tijsseling, 2001). This would ensure the self-organization and continuity
of learning and adaptation to environmental changes.

Anticipation, internal simulation, imagery and planning may also be
based on associations between past perceptions and actions (Hesslow, 2002;
Kosslyn & Thompson, 2000; Jeannerod, 1994, 1999), that reflect the previ-
ously experienced structure of the environment.

Sensorimotor simulation may ground even abstract reasoning (Barsalou,
1999; Florian, 2002). Embodied artificial agents may thus eventually develop
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genuine artificial intelligence.

4.12 Grounded symbolic communication

The meaning of symbols used in communication with other agents (either
human or artificial) must be grounded in the sensorimotor interaction with
the environment. Otherwise, this meaning cannot be accessible to the agent
itself, as it was argued theoretically (Bickhard, 1993). It was also shown
experimentally that, in humans, the neural activation triggered by the un-
derstanding of a word is similar to the activation exhibited during the ex-
periences of the person with the significant of that word (Damasio, 1990;
Pulvermuller, 1999; Martin et al., 2000).

Based on their experiments regarding the evolution of language in a pop-
ulation of artificial agents, Steels et al. (2000) have established a set of prin-
ciples regarding the self-organization of symbolic communication. Agents
must be able to engage in coordinated interactions, i.e. to have shared goals
and a willingness to cooperate. Agents must have parallel non-verbal ways
to achieve the goals of verbal interactions, for example by pointing, gaze
following, grasping, etc. This implies that the group of agents involved in
communication should share sensorimotor access to the same environment.
Agents must have ways to conceptualize reality and to form these concep-
tualizations, constrained by their embodiment and history and the ontology
underlying the emerging lexicon. The concept formation processes of the
agents must be based on similar (not necessarily identical) embodiment and
result in similar although not necessarily equal conceptual repertoires. The
conceptualization for a particular situation must be constrained to be similar
so that the agents have a reasonable chance at guessing the conceptualiza-
tion that a speaker may have used. Agents must have ways to recognize
word forms and reproduce them. Also, agents must have the ability to dis-
cover and use the strongest associations (between words and meanings) in
the group. There must be sufficient group stability to enable a sufficient
set of encounters between agents with similar lexicons. Initial group size
should not be too large so that there are enough encounters between the
same individuals. There must be sufficient environmental stability, in order
to have conceptual stability.

4.13 Interdependencies between the principles

There are many interdependencies between the principles stated above. For
example, sensorimotor coordination is tightly connected with the embodi-
ment and the situatedness of the agent. Interesting kinds of sensorimotor
coordination require a design of the sensorimotor capabilities of the agent
that respects the redundancy principle. If the agent is to be autonomous,
it has to learn on its own about the environment, and thus to be capa-
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ble of self-organized learning. Self-organization and emergence is dependent
on sensorimotor coordination and ecological balance, and is guided by the
agent’s goals. A design based on parallel, loosely coupled processes may
ensure emergence and may also respect the principles of cheap design and of
redundancy. Exploitation of the constrains of the ecological niche may also
lead to cheap designs (Pfeifer & Scheier, 1999, pp. 318–319).

5 Design issues

Many issues have to be considered in the design of artificial intelligent agents.
We will discuss some of them from the perspective of the design of an agent
with the purpose of studying theoretical principles of artificial intelligence.

As we have seen, an agent must be embodied and situated in an environ-
ment. The choice of a real (physical) environment versus a simulated one is
an important issue.

There are important advantages of using a simulated world, including a
simulation of the agent’s body. Since most of the hardware considerations
may be omitted, there is more time to focus on the conceptual issues. It
is much simpler to modify the body of a simulated agent than to modify a
preexisting robot: it may require changing a few lines of code, versus many
hours of engineering work. A simulated agent may be much cheaper to code,
in comparison with the cost of a real robot. In simulation, one does not have
to worry about charging the batteries. Common real robots have an auton-
omy of just several hours, when running on batteries. Simulated robots do
not wear off, thus imposing recurrent costs on the experiment, neither break,
which may result in unwanted interruptions of the experiments. Simulation
of some simple environments, like in navigation experiments, may also be
faster than real time. This makes simulation preferable for evolutive meth-
ods, where the behavior of generations of agents in the environment has to
be tracked for long periods of time.

However, there are also disadvantages of simulation. It is hard to sim-
ulate the dynamics of a physical robot and of an environment realistically,
especially if the simulated agents have many degrees of freedom. In the real
world, the dynamics is simply given by the laws of physics. A simulated
environment is always simpler than the real world, with its infinite richness.
This simplification is based on the designer’s perspective of what features
of the environment are important and what are negligible. On one hand,
this limits the possible ontologies that the agent may develop. On the other
hand, it may limit the capability of the agent to deal with the complexity
of the real world.

The tasks of the agent must be defined, in conjunction with the char-
acteristics of its body, sensors and effectors, and the environmental niche.
The particular tasks that are chosen depend on the subject of the research.
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Their choice should be justified by the stated hypotheses and purposes of
the experiment. Many agent studies draw their inspiration regarding the
choice of tasks from biological examples. Navigation and related tasks (such
as obstacle avoidance, light seeking) and interaction with objects (such as
sorting, collecting) are thus common tasks found in the research literature.

The design of the agent’s body is another nontrivial issue, constrained by
the proposed task, the purpose of the experiment, availability of parts and
of necessary budget, availability of qualified personnel for the construction
of the agent, and the deadlines established for the project. A component
may serve multiple purposes. An arm, for example, may be used for object
manipulation, for maintaining balance in walking, for crawling, for protec-
tion and attack, and for communication. Possible sensors for physical robots
may be cameras (mobile or not, color or grayscale), touch sensors, sonars,
infrared sensors, odometers, accelerometers, laser scanners, magnetic com-
passes, global positioning systems. The redundancy principle (Section 4.9)
should be respected in the choice and the positioning of the sensors. Current
technologies do not offer many convenient choices for motor systems. Many
common physical robots have electrical motors, which power wheel-based lo-
comotion systems, and eventually primitive arms or grabbers. Muscle wires
may be used in small robots. More complex motor systems, based on novel
synthetic active materials or with many degrees of freedom, may be quite
expensive.

A widely used platform for experiments in cognitive robotics, especially
for navigation tasks, is Khepera, a miniature mobile robot developed at
EPFL, Switzerland and currently produced by K-Team11. Khepera has a
circular shape with a diameter of 55 mm, a height of 30 mm, and a weight
of 70g. Its small size implies that experiments can be performed in regular
offices, on a table top. The robot is supported by two wheels and two small
teflon balls. The wheels are driven by extremely accurate stepper motors
under PID control and can move both forward or backward. The robot is
provided with eight infra-red proximity sensors. Six sensors are positioned
on the front of the robot, the remaining two on the back. Optional modules
(“turrets”) can be attached, with cameras or a gripper that can manipulate,
in a rather simple fashion, small objects. A Motorola 68331 controller with
256 Kbytes RAM and 512 Kbytes ROM manages all the input-output rou-
tines and can communicate via a serial port with a host computer. Khepera
may be attached to a host computer by means of a lightweight aerial ca-
ble and specially designed rotating contacts, or may operate autonomously,
with the controlling program uploaded on the onboard memory. Several
simulation programs were created for this platform, for example Webots12.

The control architecture of the agent a determinant factor for the per-
11http://www.k-team.com
12http://www.cyberbotics.com/products/webots/
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formance of the agent and the most important research issue. Several design
methods for the control systems will be presented next (Section 7). Neu-
ral networks are a preferred approach to control systems for autonomous
agents. They are robust, fault and noise tolerant. They are well adapted to
learning and generalization. They respect the principle of parallel, loosely
coupled processes and, because of being composed of many simple interact-
ing elements, can display emergence. Because of their many free parameters,
especially the weights, they incorporate a sufficient amount of redundancy
for adapting to novel situations. They are biologically-inspired, thus facili-
tating the implementation of architectures inspired by real brains. Spiking
neural networks (Maas & Bishop, 1999; Gerstner & Kistler, 2002; Rieke,
Warland, Steveninck, & Bialek, 1996) are the type of networks that respect
the most closely biological plausibility, in the conditions of the simplifica-
tions necessary for the possibility of computational implementations. It was
shown that their computational capabilities are more powerful than those
of classical, continuous-valued neural networks (Maas, 1997a, 1997b). Their
intrinsic temporal character suggest them as suitable for composing control
systems for autonomous agents, where real-time performance is needed.

6 Evaluation and analysis

There is no generally accepted way of evaluating intelligent agents, and
cognitive science models in general. However, an autonomous agent research
project should also include systematic evaluation and analysis of the resulted
artificial agent. A simple conclusion regarding the success (or the lack of it)
of the agent in the performance of the task, although important, especially
in pilot or exploratory studies, is not always sufficient for understanding the
scientific relevance of the study.

The evaluation is dependent on the purpose of the project: building a
robot for a particular applicative task, studying general principles of intel-
ligence, or modelling certain aspects of biological agents. In many cases,
evaluation would include: an assessment of the performance of the desired
task; a comparison with biological agents, where possible; compliance with
the design principles; an assessment of the heuristic value of the experiment;
and a comparison with other approaches.

The most obvious and common evaluation method is the observation of
behavior. It may be just a qualitative assessment; in this case, one should
not ignore that the interpretation of observed behavior by a human, as well
as its segmentation, are highly subjective and dependent on the human
perspective and ontologies, which may be very different from the agent’s.
Some parameters of the agent behavior (like heading directions, distance
travelled, various characteristics of movement and action—angles, forces,
and so on) may be recorded systematically, and then analyzed. This analysis
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may be statistical, or in terms of dynamical and mathematical models (e.g.
Lerman, Galstyan, Martinoli, & Ijspeert, 2001).

Systematical analysis may also be carried by varying the characteristics
of the environment or of the agent’s morphology and sensorimotor capabil-
ities (e.g. Bongard & Pfeifer, 2002).

When the control system is based on a neural network, it can be also
analyzed from various perspectives, such as dynamical systems theory (Stro-
gatz, 1994; e.g. Beer, 1995), the theory of far-from-equilibrium systems
(Haken, 1989), statistical learning theory (Vapnik, 1998), information the-
ory (Shannon & Weaver, 1949; e.g. Rieke et al., 1996; Lungarella & Pfeifer,
2001b, 2001a; Tononi, Sporns, & Edelman, 1994, 1996, 1999). A systematic
method for the localization of function in neural networks has been recently
proposed (Segev, Aharonov, Meilijson, & Ruppin, 2002; Aharonov, Segev,
Meilijson, & Ruppin, 2003).

7 Approaches in autonomous agent research

As we have repeatedly argued throughout this paper, there are many prob-
lems with the classical symbolic, modular approaches to the design of sys-
tems for autonomous agent control. We will present next several approaches
that respect the design principles stated above.

7.1 The subsumption architecture

The subsumption, or behavior-based architecture was introduced in the
80’s by Rodney Brooks, currently director of the MIT Artificial Intelli-
gence laboratory, as an engineering solution for the problems of the classical
robotic systems (Brooks, 1986; Arkin, 1998; Pfeifer & Scheier, 1999, chap.7).
Brooks’ intention was to create a methodology that would make it easy to
design robots that pursue multiple goals and respond to multiple sensors,
perform robustly, and are incrementally extendable.

This architecture was conceived to reflect aspects of natural evolution,
such as the idea of having layers that need not be changed once they have
been created. It respects the principles of sensorimotor coordination and of
the parallel, loosely coupled processes, stated above. Having relatively di-
rect couplings from sensors to actuators leads to good real time performance,
because it lacks the time-consuming modelling operations and planning pro-
cesses from classical systems.

Subsumption is a method of decomposing the control architecture of an
agent into a set of task-achieving behaviors or competencies. The classical
approach to building control architectures for robots was functional decom-
position: information from different sensory systems is integrated in a cen-
tral representation; a model of the environment is then built or updated;
on the basis of the model, an action is planned and executed. In contrast
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to this approach, the subsumption architecture is built by incrementally
adding task-achieving behaviors on top of each other. Implementations of
such behaviors are called layers. Higher-level layers (e.g. exploration of the
environment) are built and rely on lower-level ones (like object avoidance).
Higher layers can subsume lower ones. Instead of having a single sequence
of information flow, from perception to model to action, there are multiple
paths, the layers, that are active in parallel. Each of these tasks is concerned
with only a small subtask of the robot’s overall task, such as avoiding walls,
circling around targets, or moving to a charging station. Each of these layers
can function relatively independently. They do not have to await instruc-
tions or results produced by other layers. Thus control is not hierarchical.
The subsumption approach realizes direct couplings between sensors and
effectors, with only limited internal processing.

The starting point of this architecture is defining levels of competence.
A level of competence is the informal specification of a class of desired be-
haviors that the robot should be able to perform. Each level of competence
is implemented as a layer. The layers can be built incrementally, which leads
to designs in which new competencies can be added to the already existing
and functioning control system (for example, layer 0 for obstacle avoidance,
level 1 for exploration, level 2 for collecting objects). Once each layer has
been built and debugged, it never has to be changed again. Incremental
extendibility is an important factor that contributed for the popularity of
this architecture. At each level, there are sensory inputs and motor outputs.
Higher levels, like lower ones, can directly interact with the environment,
without the need to go through lower levels.

Each layer consists of a set of modules that asynchronously send messages
to each other over connecting wires. Each module is an augmented finite
state machine. Input to modules can be suppressed and outputs can be
inhibited by wires from other modules. Through this mechanism, higher-
level layers can subsume lower-level ones, hence the name of the architecture.

Examples of robots that were built using the subsumption architecture
are Myrmix (a wheeled robot that find food items in a simple environment
and “eats” them), Ghenghis (a hexapod walking robot). Cog13 is a hu-
manoid robot that was supposed to serve as a platform that would show
that higher level, human-like intelligence can emerge in a system based on
the subsumption design architecture, i.e. from many, relatively indepen-
dent processes, based on sensorimotor couplings with relatively little inter-
nal processing. However, it appeared that the original architecture had to
be extended to include learning, and the principle of not modifying already
implemented layers could not be respected (Pfeifer & Scheier, 1999, chap.7).

Until now, systems based on this architecture failed to display extremely
interesting intelligent behavior. However, the architecture leads to robust

13http://www.ai.mit.edu/projects/humanoid-robotics-group/cog/cog.html
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systems, that are useful for a wide range of applications, such as the robots
built by the IRobot company14.

7.2 Evolutionary methods

Artificial evolution of the control system or the morphology of artificial
agents is an interesting alternative for their design. By using this method-
ology, the biases of the human designer are kept to a minimum, thus allow-
ing the possibility of exploring automatically regions of design space that
conventional design approaches are often constrained to ignore. In most
of the experiments conducted with artificial evolution one can observe the
emergence of behavior exploiting sensorimotor coordination to solve difficult
tasks. In many cases the evolved solutions are much simpler than those that
can be obtained through explicit design.

The analysis of evolved agents and the identification of how they exploit
the interaction with the environment is often very difficult and requires
significant effort, but is generally much simpler than the analysis of natural
organisms because the former are much more simple and can be manipulated
much more freely than the latter. Such analysis may allow the identification
of new explanatory hypotheses that may produce new models of adaptive
behavior and cognition. Evolutionary experiments with autonomous agents
also allow a better understanding of principles like sensorimotor coordina-
tion, the importance of online learning, and the advantages that arise from
the interaction between evolution and lifetime adaptation (Nolfi & Floreano,
2002, 2000; Meyer, 1998; Pfeifer & Scheier, 1999, chap. 8).

The experiments that use evolutionary methods for agent design can be
included in two research domains, artificial life and evolutionary robotics.
Artificial life (alife) is the study of man-made systems that exhibit behaviors
characteristic of natural living systems. It complements the traditional bi-
ological sciences by attempting to synthesize life-like behaviors within com-
puters and other artificial media (Langton, 1995; Brooks & Maes, 1994).
Evolutionary robotics is the attempt to synthesize robots through evolu-
tionary techniques (Nolfi & Floreano, 2002).

Evolutionary methods usually imply the definition of a fitness function
that assesses how well the behavior of the agent comply with its assigned
task, and of an encoding scheme that relates the agent’s genotype (the in-
formation that evolves from generation to generation) to its phenotype (the
agent’s control architecture or morphology). The fitness is evaluated by
letting the agent evolve in the environment for a limited period of time.
Evolutionary procedures (such as genetic algorithms, evolutionary strategies
or genetic programming) are then used to generate agents with increasing
fitness, through mutation and combination of the genotypes.

14http://www.irobot.com
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In many cases, conducting evolutionary experiments on physical robots
can lead to prohibitive problems: the needed running time may be too
long, and time also has to be allotted for recharging of batteries, initializing
repeatedly the experiment, or repairing defected parts. For some simple en-
vironments, robots or behaviors, it was however shown that control systems
evolved in simulated environments can be transferred successfully for the
control of real robots (Miglino, Lund, & Nolfi, 1995; Jakobi, Husbands, &
Harvey, 1995; Jakobi, 1997; Tokura, Ishiguro, Kawai, & Eggenberger, 2001,
2002). For such transfer to be possible, it is important to take into account
the fact that identical physical sensors and actuators may actually perform
very differently. This problem can be solved by sampling the real world
through the sensors and the actuators of the robot. This method, in fact,
allows to build a model of a physical individual robot that takes into ac-
count the differences between robots of the same type and between different
identical components of the same robot. It is also important to account in
some way for noise and for other characteristics of the robot and of the en-
vironment not included in the simulator (ambient light, slight differences in
color and shape of the objects, etc.). This may be realized by introducing in
the simulator appropriate profiles of noise and by building a noise-tolerant
controller. Too much artificial noise in the simulation may be as deleteri-
ous as the lack of it (Jakobi et al., 1995). If a decrease in performance is
observed when the system is transferred in the real environment, successful
and robust results can be obtained by continuing the evolutionary process
in the real environment for a few generations.

Through such methods, agents were evolved that are capable of explo-
ration, obstacle avoidance, wall following, target finding, area cleaning, land-
mark identification, multiple-legged locomotion (Meyer, 1998), judging the
passability of openings relative to their own body size, discriminating be-
tween visible parts of themselves and other objects in their environment,
predicting and remembering the future location of objects in order to catch
them blind, and switching their attention between multiple distal objects
(Slocum, Downey, & Beer, 2000). Neural network based control systems
can also be evolved to display reinforcement learning-like behavior without
modification of the connection strengths (Yamauchi & Beer, 1994b, 1994a;
Blynel & Floreano, 2002).

In most cases, only the control systems are evolved, but there also are
some experiments involving the evolution of the morphology.

The evolved control systems are usually neural networks that range from
simple perceptrons to recurrent discrete-time or continuous-time networks.
Recurrent connections result in internal state of the networks that may
be used as a dynamic memory, and also may lead to oscillations that are
useful in locomotion experiments. Designing efficient encoding methods for
genotype-phenotype transformations is an active area of research. Boshy and
Ruppin (2002, in press) have recently devised an adaptive, self-organizing
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compressed encoding of the phenotypic synaptic efficacies of the agent’s
neurocontroller.

Some recent experiments have also studied agents that, besides the phy-
logenetical evolution, are also able to adapt their control system during their
lifetime. It complements evolution by allowing individuals to adapt to en-
vironmental changes that take place during the lifetime of the individual or
within few generations, and therefore cannot be tracked by evolution. In
addition, plastic individuals can adapt to sensory, motor and environmental
change that takes place after the evolutionary process. Learning capability
can help and guide evolution by channelling the evolutionary process to-
wards promising directions, and it can significantly speed up the synthesis
of viable individuals (the so-called Baldwin effect15; Turney, 1996; Parisi,
Nolfi, & Cecconi, 1992). Learning might also produce more effective behav-
iors and facilitate the ability to scale-up to problems that involve a larger
search space (Nolfi & Floreano, 1999, 2002).

The power of evolutionary methods is limited by the computational time
needed for the exploration through evolution of a large search space of pos-
sible solutions (Grand, 1998).

7.3 Biologically inspired, engineered models

Many architectures for autonomous agent control are inspired by biologi-
cal models or by neuroscientific results. Animals are currently the agents
that exhibit the greatest degree of autonomy; it is thus a straightforward
consideration to have them as inspiration for the design of artificial agents.
However, there might be dangers in following this inspiration too closely, out-
side experiments especially directed towards biological modelling. Biological
systems are not designed optimally: through the evolutionary process, so-
lutions were “patched” onto previously working systems. Many vestigial
neurological structures, interactions, and side effects may exist in animal
brains. Developmental processes needed for the growth and specialization
of cells from a single-celled zygote, the supportive mechanisms needed for the
nutrition of neurons, and other biological constraints may also lead to side
effects in the biological neural architectures. The emulation of these side
effects in artificial systems may be a distraction. Moreover, most experi-
ments in neuroscience are still dominated by representational paradigms, in
the tradition of classical cognitive science. Autonomous agent research may
influence neuroscience experimental paradigms by insisting on the impor-
tance of the principle of sensorimotor coordination (Ruppin, 2002), which
may lead (circularly), in the long term, to better experimental support for
the inspiration needed to its own development.

Biologically inspired ideas pervade, to various degrees and at various
15http://www.cs.bath.ac.uk/~jjb/web/baldwin.html
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levels, most of the work in simulation of adaptive behavior with artifi-
cial agents (animats) (Hallam, Floreano, Hallam, Hayes, & Meyer, 2002;
Meyer, Berthoz, Floreano, Roitblat, & Wilson, 2000; Pfeifer, Blumberg,
Meyer, & Wilson, 1998; Maes, Mataric, Meyer, Pollack, & Wilson, 1996;
Cliff, Husbands, Meyer, & Wilson, 1994; Meyer, Roitblat, & Wilson, 1993;
Meyer & Wilson, 1991). For example, Banquet, Gaussier, Quoy, Revel,
and Burnod (2002) implemented navigational capabilities in a robot con-
trolled by a neural network inspired by several hippocampal subsystems. A
context-independent map in the modelled subiculum and entorrhinal cortex
encodes essentially the spatial layout of the environment on the basis of a
local dominance of ideothetic movement-related information over allothetic
(visual) information. A task and temporal context dependent map based on
the transition cells in the CA3-CA1 areas allows encoding maps, in higher
order structures, as graphs resulting from combination of learned sequences
of events. On the basis of these two maps two distinct goal-oriented nav-
igation strategies emerge: one based on a population vector code of the
location-action pairs to learn and implement goal reaching; and another one
based on linking transition cells together as conditioning chains that will be
implemented under the top-down guidance of drives and motivations. Vari-
ous other biologically inspired models for robot navigation are reviewed by
Franz and Mallot (2000).

7.4 Collective behavior, modular robotics

The interaction of a group of agents, even simple ones, may lead to interest-
ing emergent collective behaviors at the group level. Common examples are
given by social insects—ants, termites, bees and wasps—and by swarming,
flocking, herding, and shoaling phenomena in groups of vertebrates. The
abilities of such systems appear to transcend the abilities of the constituent
individual agents. In most biological cases studied so far, the robust and ca-
pable high level group behavior has been found to be mediated by nothing
more than a small set of simple low level interactions between individu-
als, and between individuals and the environment. The swarm intelligence
approach emphasizes distributedness and exploitation of direct (agent-to-
agent) or indirect (via the environment) local interactions among relatively
simple agents. The main advantages of the application of the swarm ap-
proach to the control of a group of robots are three-fold: (1) scalability: the
control architecture is kept exactly the same from a few units to thousands
of units; (2) flexibility: units can be dynamically added or removed, they
can be given the ability to reallocate and redistribute themselves in a self-
organized way; (3) robustness: the resulting collective system is robust not
only through unit redundancy but also through the unit minimalist design.
(Lerman et al., 2001).

In the last few years, the swarm intelligence control principles have been
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successfully applied to a series of case studies in collective robotics: aggrega-
tion and segregation, beacon and odor localization, collaborative mapping,
collaborative transportation, work division and task allocation, flocking and
foraging. All these tasks have been performed using groups of simple, au-
tonomous robots or embodied simulated agents, exploiting local communica-
tion forms among teammates (implicit, through the environment, or explicit,
wireless communication), and fully distributed control.

For example, Beckers, Holland, and Deneubourg (1994) designed an ex-
periment where robots are equipped with a forward-facing C-shaped gripper
which is able to collect small pucks from the environment, two infrared sen-
sors for obstacle avoidance, and a microswitch which is activated by the
gripper when a certain number of pucks are pushed. The robots have only
three behaviors, and only one is active at any time. When no sensor is ac-
tivated, a robot executes the default behavior of moving in a straight line
until an obstacle is detected or until the microswitch is activated (pucks are
not detected as obstacles). On detecting an obstacle, the robot executes
the obstacle avoidance behavior of turning on the spot away from the ob-
stacle and through a random angle; the default behavior then takes over
again, and the robot moves in a straight line in the new direction. If the
robot is pushing pucks when it encounters the obstacle, the pucks will be
retained by the gripper throughout the turn. When the gripper pushes three
or more pucks, the microswitch is activated; this triggers the puck-dropping
behavior, which consists of backing up by reversing both motors for 1 second
(releasing the pucks from the gripper), and then executing a turn through
a random angle, after which the robot returns to its default behavior and
moves forwards in a straight line. The obstacle avoidance behavior has pri-
ority over the puck-dropping behavior. There is no communication between
the robots, all they do is performing these simple three behaviors. However,
the result of the experiment (involving five robots) is that the pucks, initially
dispersed randomly in the environment, are gathered in clusters.

Self-organizing multiagent societies may have interesting applications in
services (such as vacuuming and cleaning), industry (assembly) and defense
(for surveillance and transport). The “smart dust” concept implies sprin-
kling thousands of tiny wireless sensors on a battlefield to monitor enemy
movements without alerting the enemy to their presence. By self-organizing
into a sensor network, smart dust would filter raw data for relevance be-
fore relaying only the important findings to central command. The idea
was launched by the Pentagon in 1999 and has recently reached prototype
stage16. Brooks and Flynn (1989) has proposed the used of robotic swarms
for space exploration.

Modular reconfigurable robotics is a related approach to building robots
for various complex tasks. Robots are built out of a number of identical

16http://www.eet.com/at/news/OEG20030128S0028

30

http://www.eet.com/at/news/OEG20030128S0028


simple modules. Each module contains a processing unit, a motor, sensors
and the ability to attach to other modules. One module can’t do much by
itself, but when many modules are connected together, the result may be
a system capable of complex behaviors. A modular robot can even recon-
figure itself—change its shape by moving its modules around—to meet the
demands of different tasks or different working environments. For example,
the PolyBot developed at the Palo Alto Research Center is capable to recon-
figure itself for snake-like or spider-like locomotion (Yim, Duff, & Roufas,
2000). Self-reconfigurable robots have several advantages over traditional
fixed-shape robots: (1) The modules can connect in many ways making it
possible for a single robotic system to solve a range of tasks. This is useful
in scenarios where is undesirable to build a special purpose robot for each
task. The robot may even decompose itself in several smaller ones. (2)
Self-reconfigurable robots can adapt to the environment and change shape
as needed. (3) Since the robot is built out of many independent modules it
can be robust to module failures. Defect modules can be ejected from the
system and the robot may still perform its task. (4) Modules can be mass-
produced and therefore the cost may be kept low (Støy, Shen, & Will, 2002).
These robots may have applications in rescue scenarios from collapsed build-
ings, where they may enter the rubble with snake-like locomotion and then
reconfigure to support the weight of the rubble collapsed on the buried peo-
ple. Their ability to serve as many tools at once, versatility and robustness
recommend them for space applications, saving weight and being able to
packing into compressed forms. They may also have various military ap-
plications. However, there currently exist a number of both hardware and
software research challenges that have to be overcome in order for modular
robots to be able to perform in such applications.

8 Embodied agents as far-from-equilibrium sys-
tems

The self-organized formation of structures in far-from-equilibrium systems
was observed in different branches of physics, chemistry, mechanical engi-
neering and biology (Haken, 1989; Cross & Hohenberg, 1993; Prigogine &
Stengers, 1984). This type of emergence may be eventually exploited by
novel computational paradigms.

Embodied autonomous agents represent an attractive framework for the
study of the computational properties of far-from-equilibrium systems. On
one hand, the self-organizational characteristics of these systems recommend
them as support for the emergence of interesting adaptational and cognitive
properties in autonomous agents (Smithers, 1995, p. 153). On the other
hand, an autonomous agent, through continuous dynamic interaction with
the environment, provides a non-trivial sustained input to the system that
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may keep it in a non-equilibrium state. Internal self-driven dynamics, such
as threshold phenomena triggered by coincidence of random self-excitation,
may also contribute to avoidance of stable or trivial states (Berthouze &
Tijsseling, 2001). Spiking neural networks seem to be an ideal support
for autonomous agent non-equilibrium control systems, because of their in-
trinsic temporal characteristics, computational capabilities and biological
plausibility (Maas & Bishop, 1999; Gerstner & Kistler, 2002; Rieke et al.,
1996; Maas, 1997a, 1997b). They might sustain complex, chaotic dynam-
ics (Banerjee, 2001b, 2001a). Considerations from the stochastic dynamical
systems theory (Freeman, Kozma, & Werbos, 2001) may have to be taken
into account.

9 Conclusion

Autonomous intelligent agent research is a complex, interdisciplinary do-
main. As shown above, a particular interest of this research direction is
that the obtention of genuine artificial intelligence, with all its possible ap-
plications, is dependent on the advances in this research field. We have
reviewed here several principles that should guide autonomous agent re-
search. However, it is not easy to reconcile all these principles in a concrete
artefact. The complexity of the issues involved prevents the obtention of
important advances in this area. But these complex interdependencies are
the premises of the emergence of genuine intelligence. Inspirations from the
theory of non-equilibrium, stochastic dynamical systems may give a the-
oretical framework for the study of self-organization in autonomous agent
control.
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