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Abstract
We study the possibility of developing far-from-equilibrium computa-

tional systems, in analogy with corresponding self-organizing physical sys-
tems. We review the computational models developed in analogy with phys-
ical systems converging towards equilibrium and the research related to the
self-organization of far-from-equilibrium physical systems. Based on this
review, we define several nonequilibrium computational models. We con-
sider a classification of the state of a nonequilibrium informational system
by a linear readout as defining an observer-dependent nonequilibrium steady
state. We thus reinterpret the liquid state machine framework as a specific
nonequilibrium computational model, which permits its study under new per-
spectives. We also define two new types of nonequilibrium computational
models that may lead to useful applications, similar to the liquid state ma-
chine.

1 Introduction

The self-organization of a system is the spontaneous emergence of coherence or of
structure, without specific control from outside the system. It is typically the result
of numerous interactions between the lower-level components of the system, com-
prising feedback and non-linearity, and stochasticity (Anderson, 2002; Heylighen,
2003).

Self-organization is a desirable feature of an artificial computational or intel-
ligent system. By self-organizing, a system can learn, perform tasks for which it
was not pre-programmed by its designer, and thus display emergent behavior.

Self-organization can be observed in many natural systems, ranging from phys-
ical to biological and social systems. Among natural self-organizing systems, phys-
ical and chemical ones may be the easiest to analyze, being homogenous: a typical
such system is formed by a large number (of the order of 1023) of identical simple
interacting elements (molecules, atoms, particles). It is thus interesting to draw
inspiration from the study of such systems for the design of analogous artificial
self-organizing computational or intelligent systems.

Analogical thinking can often lead to advances in science (Holyoak and Tha-
gard, 1996, Chapter 8). However, one should not forget that partial structural sim-
ilarities between two different domains do not guarantee the existence of other
similarities between the domains (Indurkhya, 1992, Chapter 9). Thus, the transfer
of self-organizing principles from physical systems to computational ones may not
be straightforward or even possible.

A trivial case of self-organization in physical systems is the evolution of a sys-
tem towards equilibrium. There exist several computational paradigms that are
inspired by this kind of evolution, for example the Hopfield type of neural net-
works. A more interesting type of self-organization occurs in systems that are far
from equilibrium (systems which are subjected to a continuous flux of energy or
matter). Computational systems analogous to such systems are relatively less stud-
ied.
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Our study will investigate the possibility of designing artificial self-organizing
computational systems that are inspired by far-from-equilibrium physical systems.
First, we will briefly review the self-organization by convergence towards equilib-
rium and the computational systems it inspired, as an example of transfer of analyt-
ical tools and models from physics to computation and artificial intelligence. We
will analyze next the phenomenon of self-organization in far-from-equilibrium sys-
tems, mentioning examples and reviewing the theoretical analysis of such systems.
Several existing nonequilibrium computational systems will be also presented. We
will systematically define next possible far-from-equilibrium computational mod-
els.

The paper is written in a style that should make it accessible to both physicists
and people working in computer science or artificial intelligence.

2 Computational and artificial intelligent systems

2.1 Computational systems

Before embarking in our study, it is useful to define first what we consider to be a
computation and a computational system.

In a computation, the computational system is given some informational in-
put, and the system, through its dynamics, generates some informational output.
Thus, any dynamical system that depends on an input and has an output that is
informationally interesting can be considered a computational system.

The input may be presented to the system at a particular moment of time, fol-
lowed by the computation, or may be presented continuously during computation.
Also, the output can be read at a particular moment of time (at the end of compu-
tation), or can be read continuously during computation.

If the input is presented at a particular moment of time, computation follows,
and afterwards the output is read, we have a classical computation. If the input
is presented once, then the output is read continuously for some time, we have
a signal generator, that outputs a signal parameterized by the input. If the input
is continuous in time, and the output is discrete in time, we have a system that
performs some computation on a signal, or categorizes a signal. If both the input
and the output are continuous in time, the system acts as a filter that transforms a
signal into another signal.

2.2 Embodied intelligent systems

Genuinely intelligent systems (i.e., adaptive or creative) are necessarily embodied
(i.e., they have a body which interacts bidirectionally with an environment, through
sensors and effectors) (Florian, 2003). For embodied control systems, the input is
the activation of their sensors, and the output is the motor command that will be
executed by the effectors. Thus, both the input and the output are continuous in
time, and the output should respond in real time to the input.
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Figure 1: Self-organization by convergence towards equilibrium. A. The regular
arrangement of molecules in a crystal: a) disordered state; b) equilibrium state at
low temperatures. B. The magnetization of a ferromagnetic substance: a) disor-
dered state; b) equilibrium state at low temperatures.

3 Self-organization by convergence towards equilibrium

The evolution towards equilibrium of some physical systems can be interpreted
as a kind of self-organization, as regular structures may result from an initially
unstructured state, through interactions between the components of the systems
(Heylighen, 2003).

For example, if a particular substance is cooled below a critical temperature, its
molecules may arrange in a regular crystalline structure (Fig.1 A). The structure is
the result of the interactions between the molecules. Forces act on the molecules,
depending on their relative positions. At close distance, the forces are repulsive,
and at long distance, the forces are attractive. Because the molecules stabilize at
a distance where the net force acting on them cancels, the forces between identi-
cal pairs of molecules are identical, and the system is relatively homogenous, the
molecules will be regularly spaced in the crystal. However, the molecules are not
always ordered. If the substance is at a high temperature, it may be in a gaseous
or liquid state. Such states are characterized by a relatively high disorder, with the
molecules constantly moving around and bouncing off one another, randomly.

Another example is the magnetization of a ferromagnetic substance, such as
iron (Fig. 1 B). Each iron atom generates a small magnetic field, oriented in a
particular direction, proportional to the spin of the atom. At high temperatures, the
system is in a disordered configuration, caused by the random movements of the
atoms. The spins point in different directions, so that their magnetic fields cancel
each other out. When the temperature is lower than a critical value, the spins will
spontaneously align themselves, so that they all point in the same direction. The
cause of the alignment is the interaction between the spins: two spins tend to rotate
one another, such that their directions become parallel. By becoming parallel, they
generate a greater magnetic field in that direction, thus orienting more neighboring
spins in the same direction.

In both cases, the equilibrium state of the system at low temperature is a highly
ordered one, because of the nature of the interactions between components and of
their homogeneity.
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The systems above are kept, at a particular moment of time, at a given tem-
peratureT. At constant temperature, any physical system will evolve towards an
equilibrium state that will minimize its free energyF = E−TS, whereE is the
energy andS is the entropy of the system. This macroscopic equilibrium state of
minimum free energy corresponds to a particular probability distribution of the mi-
croscopic states that are accessible to the system. At zero temperature, the system
will evolve to an equilibrium state of minimum energy, which corresponds to a
particular microscopic state of the system. The lower the temperature, the closer
the states of minimumF will be of the state of minimumE.

Both of the systems described above display phase transitions as a function
of temperature, where the macroscopic state of the system changes drastically at
certain critical temperatures.

Another example of a physical system converging towards equilibrium is an
idealized particle gliding with friction on a landscape of hills and valleys. At finite
temperature, the particle is subjected to a random Brownian motion, that allows it
to wander across the landscape, preferring however the valleys, where the particle
has a lower energy, due to gravitation. At zero temperature, the particle will stabi-
lize at the bottom of the closest valley, where its gravitational energy is the lowest.
The self-organization of this system is not so salient as in the previous ones, but,
as we will see, its analogous computational systems are more useful.

4 Computation by systems converging towards equilib-
rium

By looking at the dynamics of systems converging to equilibrium, we may conceive
some computational systems with analogous dynamics.

In a first computational model, the input is the initial (nonequilibrium) state of
the system, and the output is the final (equilibrium) state of the system, usually at
zero temperature (corresponding to the minimum of the energy). We will name
this modelE1, for future reference. The computation starts with the presentation
of the input, which determines the initial state of the system, and ends when the
system reaches equilibrium. The computation results from the natural evolution of
the system from an initial nonequilibrium state towards equilibrium. The system
might have just one equilibrium state, or multiple equilibrium states, corresponding
to local minima of the energy.

We may distinguish two variants of this computational model. In the first
one (Ea

1), the equilibrium states, and in particular their structure, are not initially
known, and are a relevant outcome of the computation. In the second one (Eb

1), the
equilibrium states of the system are known, and the relevant outcome of the com-
putation is an indicator of which of the possible equilibrium states corresponds to
the input. The computational system thus establishes a correspondence between
classes of inputs and particular outputs.

Many classical algorithms can be seen as analogous to theEa
1 model. For

4



example, the bubble sort algorithm can be conceived as a process that minimizes
the energy in a gravitational field of some particles having a mass proportional to
the value to be ordered, constrained to a unidimensional lattice where neighboring
particles can exchange places. The equilibrium state of the system is the one with
the particles sorted according to their mass, resulting in the corresponding values
to be ordered. In general, all optimization algorithms (e.g. genetic algorithms)
can be also seen as a convergence to equilibrium, through the minimization of an
energy function or the maximization of a fitness function. Any such algorithm
specifies dynamical rules that are designed to lead to an optimal state. Given an
initial state, the system will lead to a corresponding optimum state, through the
intrinsic dynamics of the system, which was designed on purpose. We can thus see
that the self-organization of the system is trivial, as its dynamics is predefined by
the designer of the system.

The Eb
1 model is actually the paradigm of computing with attractors (Amit,

1992; Hertz et al., 1991; Hertz, 2002). An example of such system is the Hopfield
type of neural networks, that categorizes the input into predefined categories. These
neural networks are fully connected and have symmetric synapses (wi j = w ji ). The
dynamic equations that govern the evolution in time of the neural units, under the
condition of synaptic symmetry, permit the existence of a Lyapunov function. The
value of this function always decreases during the dynamics of the system, and thus
is an equivalent of the energy of a physical system. The states of the system with
minimum energy are attractors of the dynamics of the network (neighboring states
evolve in time to the attractor) and define basins of attraction in the state space of
the network.

The neural network described above can function as an associative memory.
The weights of the network can be set such as some of the attractors of the dy-
namics are the patterns to be stored in memory. Given as input a pattern that is a
corrupted version of one of the stored patterns, by setting the network state as the
input pattern, the state of the network will evolve to the stored pattern, which is the
result of the computation. Because of the analogy with physical systems, concepts
and tools from statistical physics were successfully used to draw results such as the
storage capacity of such networks, as a function of the number of neural units and
the statistical properties of the patterns to be stored.

This kind of networks were studied as a model for understanding the function-
ing of the brain, but it is currently considered that this model is inappropriate, as
there are not sufficient proofs that there are static attractors in the brain. How-
ever, these results also had useful applications in artificial intelligence, and thus
this computational paradigm can be considered as a successful case of analogical
transfer between a physical system and a computational model.

A second computational model (E2) is the one where the input of the system is
the order parameter that controls the phase transitions and the convergence towards
minimum energy, analogous to the temperature in the first two physical systems
presented in Section3. The output is a value that indicates the macroscopic state
of the system, among predefined possible states. From a computational point of
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Figure 2: Schematic representation of Rayleigh-Bénard convection showing fluid
streamlines in an ideal roll state. The upper surface of the liquid is at temperature
T, and the lower one at temperatureT +∆T.

view, the system has a number of metastable states (corresponding to the different
phases), and the output will switch between these states, driven by the input.

We are not aware of any practical applications of theE2 computational model.
A reason for the lack of applications might be the fact that the output can have
a low, limited number of states, and it depends in a monotonic fashion on the
input. Such a simple dependence may be easily coded into a classic algorithm, and
an implementation using a system formed from a large number of components,
capable of phase transitions, may be superfluous.

In the Eb
1 andE2 computational models, the kind of self-organization that is

apparent in the crystallization or the magnetization example, i.e. the apparition of
order in a particular state of the system, is not relevant. In these computational
models, it is not important that a particular state of equilibrium has a particular
structure. The structure might be useful just for recognizing the particular state.
However, what matters is that the system has a multitude of equilibrium states,
depending on the control parameter or the initial state of the system.

The structure of the state is relevant just for theEa
1 model, but in this paradigm,

as we have seen, we can hardly speak about self-organization, as the dynamics of
the system is predefined by its designer.

We can thus see that, even for the simple case of self-organization by conver-
gence towards equilibrium, it is not obvious to create useful computational models
by analogy with the physical systems. Only the modelEb

1 has led to useful devel-
opments, and for this model the apparent self-organization of the equilibrium state
we have seen in some physical systems is not relevant, but just the fact that the sys-
tem may choose one of several equilibrium states, depending on the initial state.
This conclusion is worth to be taken into account when we will analyze the pos-
sibility of creating useful computational systems in analogy with self-organizing
far-from-equilibrium systems.

5 Self-organization in nonequilibrium systems

A famous example of self-organization far from equilibrium is the Rayleigh-Bénard
rolls (Cross and Hohenberg, 1993). They appear in a thin horizontal layer of vis-
cous liquid heated from below. Thus, there is a positive difference in temperature
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∆T between the lower and the upper surface of the liquid, which generates an en-
ergy flux in the system. At low∆T, the fluid remains at rest, and there is a uniform
temperature gradient between the surfaces. The higher temperature of the lower
layers dissipate by conduction. At higher∆T, the warmer, less dense lower layers
of fluid tend to rise, a process which is constrained by gravity because the fluid
cannot rise as a whole. A convective roll regular pattern appears, where the fluid
rises in some regions and falls in others (Fig.2). This stationary flow is an example
of a nonequilibrium steady state (NESS).

This is a non-trivial example of self-organization. The movement of the molecules
of liquid is correlated on macroscopic lengths, while their interactions that deter-
mine the movement still occur on microscopic scales. The self-organization is
determined by the flux of energy, which yields competing interactions in the sys-
tem, and by the macroscopic properties of the system, like its size, which act as
limit conditions.

Other examples of self-organization far from equilibrium are spatio-temporal
patterns that appear in reactors during some chemical reactions (such as the Belousov-
Zhabotinsky oscillatory reaction or the Brusselator), morphogenesis in living sys-
tems, visual hallucination patterns, turbions (Cross and Hohenberg, 1993; Haken,
1989; Prigogine, 1981; Prigogine and Stengers, 1984).

An idealized model that permitted computational and analytical explorations of
the properties of nonequilibrium systems is the driven Ising lattice gas (Schmittmann
and Zia, 1998; Zia et al., 2000; Kwak et al., 2004; Korniss, 1997).

6 The physics of nonequilibrium systems

Physical nonequilibrium systems are systems which are not isolated, and thus can
exchange energy or matter with the environment. They may display a much richer
variety of behaviors than equilibrium systems. For example, they may display
oscillations, spatial inhomogeneities or patterns, or spatiotemporal chaos. If the
driving flux is steady, the systems may converge to a nonequilibrium steady state
(NESS), as already exemplified.

Close to equilibrium (in a well-defined sense, i.e., where the forces that drive
the system away from equilibrium are small enough that their effects depend lin-
early of them), the concepts of equilibrium statistical mechanics can still be used
for understanding the phenomena involved. Linear irreversible processes like the
relaxation processes from nonequilibrium to equilibrium states or the response of a
system near equilibrium to weak external disturbances can be studied as an exten-
sion of the well-founded statistical mechanics of equilibrium states (Kubo et al.,
1985; McLennan, 1989). It is also known that, close to equilibrium, a system
will evolve to a steady state characterized by a minimum (but positive, according
to the second law of thermodynamics) production of entropy compatible with the
constraints imposed to the system. In this framework, the equilibrium appears as
a limit case where the production of entropy is zero. As in the steady state the
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entropy of the system is constant in time, a positive production of entropy of the
system means that the system transfers entropy to the external environment (Pri-
gogine, 1981; Prigogine and Stengers, 1984; Prigogine, 1993).

However, far from equilibrium, quantities like the temperature of the system
or other concepts of equilibrium statistical physics like the Gibbs ensemble are
defined no more. More importantly, there is nothing analog to the free energy
in equilibrium systems, no Lyapunov functional that varies monotonically during
the evolution of the system towards the steady states, with a few exceptions. A
Lyapunov functional exists just for a few particular far-from-equilibrium systems
where it is constructed in a particular fashion (Descalzi et al., 2001; Barŕe et al.,
2002), or for several systems where the steady state corresponds to a maximum
production of entropy (Dewar, 2003).

The stability of the nonequilibrium steady state or its independence of fluctua-
tions are no longer guaranteed. In some cases, for certain ranges of order param-
eters, a steady state may be unstable, and random fluctuations, instead of being
averaged out, can be amplified and can invade the entire system, leading it to a
qualitatively different macroscopic state. This is a nonequilibrium phase transi-
tion, like the one in the Rayleigh-B́enard example above, where, above a critical
temperature difference, the conduction steady state changes to the convective one
with regular rolls (Prigogine, 1981; Prigogine and Stengers, 1984; Prigogine, 1993;
Rácz, 2002). A state of self-organization results, where the system is in a ordered
state, that depends on the nonequilibrium macroscopic conditions and the history
of fluctuations. A system may have more than one far-from-equilibrium steady
states that correspond to a particular set of macroscopic constraints, and thus the
actual state of the system depends on its past. The evolution of the system between
various steady states, depending on the variation of macroscopic constraints, or its
chaotic behavior can be studied in the framework of the bifurcation theory (Pri-
gogine, 1981; Prigogine and Stengers, 1984).

Nobel Prize laureate Ilya Prigogine and physicist Hermann Haken have enthu-
siastically discussed about the relevance of concepts originated from the study of
physical far-from-equilibrium systems for understanding other complex systems,
like biological and social ones (Prigogine and Stengers, 1984; Haken, 1989, 1997).
Some of Prigogine’s writings have also inspired our attempt to apply such con-
cepts to the design of novel computational models. However, at a close look,
their claims are exaggerated (Shalizi, 1997, 2002). The theoretical tools currently
available, including those developed by Prigogine and Haken, seem to have little
applicability outside the particular domains or conditions for which they were de-
veloped. Understanding analitically a specific phenomenon, for example nonequi-
librium spatiotemporal pattern formation requires specific approximations and per-
turbative techniques, although these techniques may be useful in the study of more
than one phenomenon (Cross and Hohenberg, 1993). In general, it seems that the
current theoretical understanding of far-from-equilibrium self-organization is not
very advanced. Quoting several specialists:“In comparison with situations near
equilibrium, the behavior of a far-from-equilibrium system becomes as specific as
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possible. There is no universally valid law from which the general behavior of
the system to be deducted”(Prigogine and Stengers, 1984)1; “The laws of equilib-
rium are universal. But far from equilibrium, the behavior can become specific.”
(Prigogine, 1981)2; “we do not have a theory even for the NESS”(Rácz, 2002, p.
4). For example, the properties of the entropy of a far-from-equilibrium system
are still not well understood and are the subject of current research (Ruelle, 2003;
Goldstein and Lebowitz, 2004; Gallavotti, 2004).

Thus, it is not obvious how a successful transfer of concepts and tools can be
made from nonequilibrium physical systems to computational models. We will in-
vestigate, however, such possibilities in the following section. The general result
that we will retain from physics is that a far-from-equilibrium system is generally
not characterized by a Lyapunov function, its behavior can be specific, and thus,
among other behaviors, it can self-organize under certain circumstances. More
specific results that we identified as potentially useful in the study of nonequilib-
rium computational systems are some measures of the self-organization of an open
system (Klimontovich, 1995, 1997, 1999; Ulgiati and Bianciardi, 1997; Shalizi,
2004), the constraints on transition rates in driven steady states (Evans, 2004), and
the slaving principle (Haken, 2004, 1989).

7 Existing nonequilibrium computational models

7.1 The Liquid State Machine

The liquid state machine (LSM) was recently proposed as a new, biologically in-
spired, nonequilibrium computational paradigm byMaass et al.(2002) and inde-
pendently byJaeger(2001) as “echo state” networks. A LSM processes a contin-
uous analog input stream, and its output is also a continuous analog stream. The
processing is performed in real time, there is no computation delay other than the
delay given by the propagation of the signal through the system. Thus, this kind
of system is suitable for the control of embodied agents, or for the analysis of their
control system.

The LSM is composed of a nonlinear “liquid” filterL (a function that maps
time-varying input streamsu(·) to other time-varying streamsx(·), also known as
operator in mathematics; for example, a random recurrent neural network), and a
memoryless readout functionf that maps the outputx(t) of the filter to a target
outputy(t) (for example, a simple perceptron). The filterL has a fading memory:
x(t) may depend not only onu(t), but also, in a quite arbitrary nonlinear fashion,
on previous inputsu(t − τ). The LSM has universal computational power for time
series, if two simple conditions are fulfilled. The first condition is that the filterL
separates output-relevant differences in two inputsu1(t) andu2(t) to different states

1Translated from Romanian edition, I. Prigogine şi I. Stengers (1984),Noua alianţ̆a: Metamor-
foza ştiinţei, Ed. Politic̆a, Bucureşti, p. 201

2Translated from Romanian edition, I. Prigogine (1992),De la existenţ̆a la devenire: Timp şi
complexitatêın ştiinţele fizice, Ed. Ştiinţific̆a, Bucureşti, p. 93
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x1(t) andx2(t) (the point-wise separation property). The second condition is that
the readout map is able to distinguish and transform different statesx(t) into given
target outputsy(t) (the approximation property). It was recently shown that, at least
for a particular type of neural networks, the computational capabilities of the LSM
are largest near the critical boundary where the transition from ordered to chaotic
network behavior takes place (Bertschinger and Natschläger, 2004; Natschl̈ager
et al., 2004).

The filterL is a dynamical system which is kept out of equilibrium by the input
u(t), and thus the LSM is an example of a nonequilibrium computational model.
However, the model does not use any theoretical concepts developed in the study
of nonequilibrium physical systems.

The initial implementation of the LSM (Maass et al., 2002) used a recurrent
spiking neural network as the nonlinear filterL, and a small population of spiking
neurons, trained with a perceptron-like local learning rule, as a readout map. How-
ever, the nonlinear filter may be implemented also by sigmoid neural networks,
either in continuous or discrete time. Many other types of nonlinear filters are
possible. Recent implementations included a finite element simulated model of a
liquid (Goldenholz, 2003) or even real water in a bucket (Fernando and Sojakka,
2003) for the nonlinear filter, with classic perceptrons for the readout map.

The filter transforms the temporal dynamics of the input stream into a high
dimensional spatial pattern. The readout neurons, which may receive inputs from
hundreds or thousands neurons from the neural filter, can learn to extract salient
information from the high dimensional transient states of the filter, and can trans-
form them to stable readouts. Invariant readout is possible despite the fact that the
neural filter may never revisit the same state. The readout map may be linear, and
thus extremely easy to train with classic supervised learning methods.

The LSM computational paradigm has certain properties that make it extremely
interesting. Multiple readout modules can be trained to perform different tasks on
the same neural filter, thus enabling parallel real-time computing. The filter may
be a generic circuit, to be used for many tasks, only the readout map needs to be
trained for each task. Computational power may be added to the LSM by just
adding generic neural circuits to the neural filter, without changing the existing
wiring. The system is extremely robust to noise.

7.2 Haken’s synergetic computer

Haken(1989, 1997) has developed a model for the so-called “synergetic com-
puter”, inspired by some characteristic equations of nonequilibrium pattern forma-
tion in physical systems. The synergetic computer performs pattern recognition:
the initial state of the systemq(0) is given by the input pattern, and subsequently,
through its dynamics, the stateq(t) of the system converges to one of the pre-
defined prototype patterns,vk, whereq andvk are vectors of real numbers. The
winning pattern will be the most similar to the initial stateq(0), having the greatest
normalized vector productvk ·q(0)/ |vk| |q(0)|.
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The dynamics of the system is given by the equationq̇ = −∇qV(q,vk)+F(t),
whereF(t) is a stochastic fluctuating force. Thus, in practice, this system actually
evolves to minimize the potentialV and thus it is not a far-from-equilibrium system,
but a system converging towards equilibrium.

Another approach to nonequilibrium pattern recognition has been developed
by Marro et al.(2002).

7.3 Generic neural networks

Any neural network that has a dynamic driven by an input continuous in time is
a nonequilibrium system. This kind of networks are often studied in the context
of artificial intelligence, but they are seldomly analyzed using theoretical concepts
developed in the study of nonequilibrium physical systems.

8 Nonequilibrium systems as computational devices

8.1 General considerations

In the following, we will try to systematically develop nonequilibrium computa-
tional models, by analogy with nonequilibrium physical systems. We will first an-
alyze the most important similarities and dissimilarities between a nonequilibrium
physical system and an analogous computational one.

Similar to a physical system, a self-organizing computational system should
be composed of a large number of relatively simple elements. Their low level
interaction, comprising feedback and non-linearity may lead to macroscopic self-
organization.

A physical system can be maintained far from equilibrium by fluxes of energy
or matter. The corresponding fluxes that keep a computational system in a nonequi-
librium state are informational. Whether the input informational fluxes are steady
or not may depend on the interpretation of the information they carry.

Physical systems are usually homogenous (e.g., are composed of a large num-
ber of identical particles) and are spatially extended. Their self-organization is
usually observed as long range spatial correlations (spatial regularities) or tempo-
ral oscillations. In contrast, informational systems may need to be highly heteroge-
nous, or to have non-standard topologies, for information processing purposes. For
example, computationally interesting neural networks may have a complex struc-
ture, midway between full connectivity and nearest-neighbor connections. The
complex topology may make difficult the detection of regularities analogous with
the spatiotemporal patterns of physical systems, or analytical treatments that need
operators analogous to the spatial operators for physical systems. Thus, the lack
of intrinsic quantities like space or energy and the complex topology may result
in a need for particular measures for assessing the stationarity of the NESS or for
their detection. This also suggests that, at least for informational systems, the self-
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organization is observer-dependent: regularities in the dynamics of the system may
be hidden until the observer discovers them through a particular measure.

A possible solution for these issues is the model of the liquid state machine,
which has shown that linear readouts can establish equivalence relationships be-
tween dynamic states of high-dimensional nonequilibrium dynamical systems. Thus,
nonequilibrium steady (i.e., readout equivalent) states of computational systems
can be defined by an observer. Whether the system is or is not in a NESS may
depend on the interpretation of the observer, according to her specific purposes.

In contrast to a physical system, a computational system may have, by design,
the possibility to adapt to a perturbative input flux by assimilating it. Initially,
the flux may drive the system far from equilibrium, possibly up to a NESS. The
system may then suffer an internal transformation, adapting to the perturbative
flux, resulting a transition from a NESS to a state of equilibrium. Further work is
needed to study the properties of such systems.

8.2 Types of nonequilibrium computational models

We may first try to define nonequilibrium computational models analogous to the
equilibrium computational ones, where the NESS would be the analogous of the
equilibrium state. The similarity between a NESS and a state of equilibrium is that
they are both steady, identifiable states. There also is an important difference. For
computational systems converging towards equilibrium, we can design the form of
the energy landscape in order to have particular states as minima (as in the case of
the Hopfield type of neural networks, theEb

1 computational model). For far-from-
equilibrium systems, a Lyapunov functional cannot be, in general, defined, and
thus we cannot define NESSs by adapting the dynamics of the systems. However,
we may define the NESS by adapting the observation of the system’s dynamics, as
discussed above.

N1, the analogous of theE1 computational model, is a system where the input
is the initial state, and the output is the final NESS. The flux that keeps the system
out of equilibrium does not have here an informational purpose, but is just a param-
eter of the system. The system should not have a fading memory, like the classic
LSM, but should keep the memory of the initial state and reflect it in the resulting
steady state. Thus, it should not be neither ordered nor chaotic, but probably at the
boundary between chaos and order, like the most efficient LSMs (Bertschinger and
Natschl̈ager, 2004; Natschl̈ager et al., 2004).

Na
1 , the analogous of theEa

1 computational model is a system where we define
the dynamics according to our purpose, and the relevant output is the structure of
the output NESS that corresponds to the input. The dynamics may be defined, for
example, by specifying transition rates (Evans, 2004). Further work is needed for
analyzing the possibility of implementing this model and its applications.

Nb
1 , the analogous of theEb

1 computational model is a system where the possi-
ble NESSs of the system are predefined, and the input is categorized by the NESS
that results. This may be implemented, for example, by training one or multiple
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readouts (as in the LSM model) that would map the NESSs of the system to the
desired categories. The multiple NESSs may be studied in the framework of bi-
furcation theory. Again, further work is needed for analyzing the possibility of
implementing this model, its applications and its advantages over theEb

1 model
(like, for example, possible faster convergence times).

N2, the analogous of theE2 computational model is a system where the input
is an order parameter (like the temperature difference for the Bénard rolls), and the
output is the resulting NESS. It is not clear whether such a computational system
may have any useful applications. LikeE2, the complexity of such a system may be
superfluous for such computation that may be achieved more easily within classical
computational models.

We are now ready to define two specific nonequilibrium computational models,
that have no correspondence within the equilibrium ones. In theN3 computational
model, the input is the informational flux that keeps the system out of equilibrium,
and the output is the state of the system (possibly a NESS), or a function of it. This
actually corresponds to the liquid state machine computational framework, dis-
cussed above (Section7.1). This computational model is the most interesting com-
pared to the ones already presented, as it allows real-time computation on complex
inputs, and is thus appropriate for use as a control system for embodied intelligent
agents, or for the analysis of their control systems.

Interpreting the LSM or an intelligent embodied agent as nonequilibrium com-
putational systems allows their study from new perspectives. For example, we may
study the states that belong to one category, as categorized by a trained readout, as
being a NESS; or we may study them as systems that produce informational en-
tropy.

Our systematic approach, inspired by physical systems, allows us to define a
new type of specific nonequilibrium computational model,N4. The self-organization
of far-from-equilibrium physical systems results in long-range spatial correlations,
which make the system sensitive to macroscopic spatial constraints. Thus, macro-
scopic constraints can influence the structure of the NESS. Analogously, we can
define a computational model where the input corresponds to macroscopic con-
straints imposed to the system, while the output is again the state of the system
(possibly a NESS), or a function of it.

TheN2, N3 andN4 computational models described above can also be mixed,
by allowing the input to modify in the same time the order parameters of the sys-
tem, the informational nonequilibrium flux and the constraints imposed to the sys-
tem, but probably such a system may be more difficult to analyze and design for
useful purposes than the simple models themselves.

TheN3 andN4 models are specific nonequilibrium models, as they use as com-
putational input the informational flux that keeps the system out of equilibrium.
Thus, the informational flux is an intrinsic component of the system, unlike in the
other models. For the other models (N1 andN2), it may be possible to map the
nonequilibrium steady states to equilibrium states, through an informational trans-
formation. Thus,N3 andN4 are the most interesting to study.
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9 Conclusion

We have reviewed the computational models developed in analogy with physi-
cal systems converging towards equilibrium and the research related to the self-
organization of far-from-equilibrium physical systems. The equilibrium statistical
models have shown that it is not straightforward to design computational systems
by analogy with self-organizing physical systems. Out of the four possible models,
only one has led to useful developments, and for this model the apparent self-
organization of the equilibrium state we have seen in some physical systems is not
relevant, but just the fact that the system may choose one of several equilibrium
states, depending on the initial state. Also, we have concluded that the current the-
oretical understanding of far-from-equilibrium self-organization of physical sys-
tems is not very advanced, and thus it is not straightforward to design analogous
computational systems.

However, this review has led us to define several nonequilibrium computational
models. We considered a classification of the state of a nonequilibrium informa-
tional system by a linear readout as defining an observer-dependent nonequilibrium
steady state. We have thus reinterpreted the liquid state machine framework as a
specific nonequilibrium computational model (N3), which permits its study under
new perspectives. We have also defined new types of nonequilibrium computa-
tional models (N1, N4) that may lead to useful applications, similar to the liquid
state machine. Further work will analyze the computational models and their pos-
sible implementation.
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