
coneural
Center for Cognitive and Neural Studies

Evolution of alternate object pushing in a
simulated embodied agent: Preliminary

report
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Abstract

A push-release-seek reflex is evolved in a simulated simple agent inter-
acting with objects. The agent is controlled by a spiking neural network.
Succesful experiments involved a network of 125 neurons and spike-time-
dependent synaptic plasticity. Plasticity seems to be actively used by the
evolved network in memorizing some aspects of the environment that allow
the performance of the task.

1 Introduction

Genuine, creative artificial intelligence can emerge only in embodied agents, ca-
pable of cognitive development and learning by interacting with their environment
(Florian, 2003a). Before the start of the learning process, the agents need to have
some innate (predefined) drives or reflexes that would induce the exploration of the
environment. Otherwise, the agents would not do anything once emerged in their
environment, and learning would not be possible.

In the experiments presented in this paper, some basic reflexes are evolved for
a simple simulated agent, controlled by a spiking neural network, that is able to
interact with the objects in its environment. These reflexes will be used in fu-
ture research to bootstrap the ontogenetic cognitive development of the agent. By
learning the structure of the environment, guided by value signals, the agent may be
able, in the future, to perform tasks much more complex than the reflexes evolved
here.

The preliminary evolutionary experiments also serve to provide working spik-
ing embodied neural networks. Their functioning may be analyzed and the results
may lead to new models of self-organization that can be implemented to ground
the ontogenetic cognitive development of the agent. Also, these experiments serve
to estimate the complexity of the behaviors and of the neural structures that can be
evolved in reasonable computing time using current computers.

2 The agent, its environment and its task

2.1 The simulator

The agent and its environment are simulated using Thyrix, a simulator specifically
designed for evolutionary and developmental experiments for embodied artificial
intelligence research (Florian, 2003c). The simulator provides a two-dimensional
environment with simplified, quasi-static (Aristotelian) mechanics, and supports
collision detection and resolution between the objects in the environment.

2.2 The agent’s morphology

The agent’s morphology was chosen as the simplest one which would allow the
agent to push the circular objects in its environment without the slipping of the
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Figure 1: The agent’s morphology.

objects on the surface of the agent. This slipping may appear, for example, if a
circle pushes another circle, and the pushing force is not exactly oriented on the
line connecting the centers of the two circles.

We wanted maximum simplicity both for economy (to allow evolution and
development in less computing time) and for having few degrees of freedom, which
may allow dynamical analysis and simpler statistical analysis of the behavior of
the agent. However, we have tried to respect the principle of ecological balance
(Pfeifer and Scheier, 1999, pp. 455–463) in the design of the agent’s morphology
and sensorimotor capabilities.

Thus, the agent is composed of two circles, connected by a variable length link.
The link is “virtual”, in the sense that it provides a force that keeps the two circles
together, but it does not interact with other objects in the environment, i.e. external
objects can pass through it without contact. With this morphology, the agent can
easily push other circles in its environments, by keeping them between its two body
circles, without the need of balancing them to prevent slipping.

2.3 The agent’s effectors and sensors

The agent can apply forces to each of its two body circles. The forces origi-
nate from the center of the circles and are perpendicular to the link connecting
them. They may be considered to originate from some virtual “rockets”. Two
effectors correspond to each of the two body circles, one commanding a forward-
pushing force, and one commanding a backward-pushing force. There are thus
four “rocket” effectors. The net motor force acting on one body circle is the sum
of the forward and backward forces. These effectors allow thus the agent to move
backward or forward, to rotate in place, and, in general, to move within its envi-
ronment.

A fifth effector commands the length of the virtual link connecting the two
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body circles, between zero and a maximum length. If the actual length of the link
is different from the commanded length, an elastic force (proportional with the
difference between the desired and actual length) acts on the link, driving it to the
desired length.

The agent has contact sensors equally distributed on the surface of its two body
circles (8 contact sensors per circle, spanning a 45◦ angle each). The activation
of the sensors is proportional to the sum of the magnitudes of the contact forces
acting on the corresponding surface segment, up to a saturation value.

Each circle also has 7 visual sensors. Each sensor has a 15◦ view angle, orig-
inating from the center of the circle. Thus, each circle has a 105◦ viewing angle,
centered around the “forward” direction. The activation of the sensors is propor-
tional to the fraction of the viewing angle covered by external objects. The range
of the sensors is infinite.

The agent also has proprioceptive sensors corresponding to the effectors. Each
body circle has two velocity sensors, measuring the velocity in the forward and
backward directions, respectively. The sensors saturate at a value corresponding to
the effect of the maximum motor force that can be commanded by the effectors.
The agent also has a proprioceptive sensor that measures the actual length of the
link connecting the two body circles, that saturates at the maximum length that can
be commanded by the link effector.

Thus, the agent has a total of 5 effectors and 35 sensors (16 contact sensors,
14 visual sensors, and 5 proprioceptive ones). Each sensor or effector can have an
activation between 0 and 1.

2.4 The environment

In the experiments presented in this paper, the environment consisted of one agent
and 6 circles (“balls”) that the agent can move around. The spatial extension of
the environment was not limited. The balls have variable radiuses (between 0.06m
and 0.26m), comparable to the radius of the agent’s body circles (0.1m).

During each trial, the agent and the balls were positioned randomly in the en-
vironment, without contact, in a rectangular perimeter of 6m by 4m.

2.5 The task

The task of the agent was to move alternatively each of the balls in its environment,
on a distance as long as possible, in limited time (100s of simulated time). More
specifically, the fitness of each agent was computed as the sum of the distances on
which each ball was moved, but with a threshold ofdt = 2m for each ball. Thus,
the agent had to move all balls, instead of just detecting one ball and pushing it
indefinitely. The sum of distances may thus range between 0 and 12m.

This task was considered to evolve a push-release-seek reflex, that might be
used in future experiments to bootstrap more complex behaviors, such as arranging
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Figure 2: The agent used in the experiments, pushing a ball in the environment.
The gray circles compose the body of the agents, the green segment represents the
elastic link connecting them. The light blue rays emerging from them represent the
viewing angles of the visual sensors, the red rays represent the activation of these
sensors. The open circles are the balls.
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the balls in a particular pattern, sorting the balls by size, or categorizing different
kinds of objects.

If the agent would move in straight line at the maximum speed corresponding
to the maximum forces it can produce, pushing the six balls for equal time, and
neglecting the time needed for taking curves, seeking the balls, switching between
balls, the distance that it may cover in the limited time is 55.945m. Given the
existence of distances between balls, the fact that the speed is lower when taking
curves, that the agent has to release the balls when switching them, we may evalu-
ate that the task is relatively difficult. It may require the coordination of the motor
effectors for attaining high speeds, the evaluation of the distance or time spent
pushing a certain ball, and eventually some memorization, either of objects size or
positions, that would prevent the repeated pushing of the same balls.

To determine the fitness of a particular individual, we have averaged its perfor-
mance on three trials, with random initial configurations of the balls.

3 The controller

3.1 The spiking neural network

The controller of the agent consisted of a recurrent spiking neural network. We
have used this type of network as it seems to be the most suited for the control of
embodied agents, among the classes of neural networks amenable to large scale
computer simulation (Florian, 2003b). The controller has as input the activations
of the agent’s sensors, and as output the activations of the agent’s effectors.

We have designed a fast, event-driven spiking neural simulator. The simulator
was inspired by Mureşan’s Neocortex (Mureşan and Ignat, 2004), however is sim-
pler and faster, as we didn’t need features like retinotopic maps, multiple types of
neuron updating, and we used a single type of neuron.

The network consists of leaky integrate-and-fire neurons (Gerstner and Kistler,
2002, Chapter 4) with a resting potential of−65mV, a threshold potential of
−40mV, a resistance of 10MΩ and a decay constant of 10ms.

The simulator uses discrete time with a resolution of 1ms. At each time step,
only the neurons that receive spikes are updated (hence the event driven nature of
the updating of the network). If the updated neurons fire, their spikes are stored in
a list. This spike list will be used during the next time step to update the affected
postsynaptic neurons. Thus, the spikes propagate within an axonal delay of one
time step.

3.2 Spike-time dependent plasticity

During some experiments, the neural network featured spike-time dependent plas-
ticity (STDP). STDP is a phenomenon that was experimentally observed in biolog-
ical neural systems (Bi, 2002). The changes∆w of the synapse efficacies depend
on the relative timing∆t between the postsynaptic and presynaptic spikes (see Fig.
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Figure 3: Typical example of spike-timing dependent plasticity. The relative
change in synaptic efficacy∆w/w is plotted against the delay∆t between the post-
synaptic and presynaptic spike. Synaptic potentiation (∆w/w > 0) appears when
the postsynaptic spike follows (is caused by) the presynaptic spike (∆t > 0) (after
Bi, 2002).

3). The synapse is strengthened if the postsynaptic spike occurs shortly after the
presynaptic neuron fires, and is weakened if the sequence of spikes is reversed,
thus enforcing causality. Notably, the direction of the change depends critically on
the relative timing.

We have modeled STDP following the method ofSong et al.(2000). The values
of the parameters used wereA+ = 0.005,A− = 1.05A+, andτ+ = τ− = 50ms.

Following Di Paolo (2002b), we have implemented directional damping for
the synapse efficacies. The synapse efficacies, which are variable due to STDP are
limited to the interval[0,wmax], wherewmax can be either positive or negative, and
is a genetically determined maximum (in absolute value) efficacy. We thus have
0≤ w/wmax≤ 1.

4 The agent-controller interface

In interfacing a spiking neural controller with an embodied agent, a conversion of
the analog input and output signal to binary spikes has to be performed. Following
Di Paolo(2002b), the analog values of the sensor activations were converted to a
spike train using a Poisson process with a firing rate proportional to the activation.
The maximum firing rate of the input neurons was set to 100Hz.

The spikes of the motor neurons were converted to an analog value by a leaky
integrator of time constantτ = 10ms. The maximum value of the effector activa-
tion, 1, corresponds to a firing rate of the motor neuron of 100Hz.

Each sensor of the agent, of activations, 0≤ s≤ 1, drove two input spiking
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neurons, one being fed with activations and the other with activation 1−s. Thus,
both the activation of the sensor and its reciprocal was fed to the network, and there
are 70 input neurons in the network. The reason of this duplication of the sensory
signal in the spiking neural network is twofold. First, this allows the network to be
active even in the absence of sensory input. For example, if the agent is in a position
where nothing activates its sensors (there is no object in its visual range, no tactile
contact etc.), there must be however some activity in the neural network, in order
for the effectors to be activated and the agent to orientate to stimuli. Second, this
mechanism implies that the total input of the network is approximately constant in
time (the number of spikes that are fed to the network by the input). This might
be important for future analysis of the network’s activity in the framework of the
theory of far-from-equilibrium systems.

5 The evolutionary algorithm

We have evolved controllers with both fixed and variable topology networks. The
networks contain input neurons (driven by the sensors), hidden neurons, and motor
neurons (that drive the agent’s effectors).

The parameters determined by evolution were the values of the synaptic effica-
ciesw (in the non-plastic case), or the values of the maximum (in absolute value)
synaptic efficacieswmax (in the STDP case). In addition to these, in the case of
variable topology networks, the topology was also determined by evolution.

5.1 Evolution of fixed topology networks

The fixed topology networks were fully connected (i.e., all neurons were connected
to all neurons in the network, except input neurons, which had only efferent con-
nections). In this case, there are 50 hidden neurons, in addition to the 70 input
neurons and the 5 output neurons. The networks thus consists of 125 neurons and
6875 synapses. The genome directly encodes the synaptic efficacies (w or wmax) of
these synapses.

We have used a standard evolutionary algorithm, with a population of 80 indi-
viduals, truncation selection (the top 25 % individuals reproduce) and elitism. 10
% of the offspring result from mating with single cut crossover. Mutation is applied
uniformly to all genes.

5.2 Evolution of variable topology networks

We have also evolved networks with variable topology. There are several advan-
tages in evolving such networks. The number of hidden neurons does not have to be
arbitrarily established before the evolution. The network is allowed to grow from a
small initial number of neurons, up to the number needed to solve the task, through
a process of complexification. Full connectivity is not needed: the connections
between neurons are evolved, and thus the network might have a smaller number
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Figure 4: Evolution in the fixed topology, STDP case. The top curve represents the
best fitness in a generation, and the bottom one represents the average fitness.

of connections than the maximum possible. Less neurons and less synapses lead
to less computing time needed for the evaluation of these networks, and thus may
result in faster evolution.

The method used for evolving growing networks was a modified version of the
NeuroEvolution of Augmenting Topologies method (NEAT) (Stanley and Miikku-
lainen, 2002).

6 Results

We evolved first fixed topology networks. Networks with both static and plastic
synapses evolved to solve the required task, with the performance of the best indi-
viduals reaching a plateau at about 11.3, very close to the maximum possible of 12
(see Fig.4). Plastic networks evolved much faster, in terms of generations, than
networks with static synapses. However, the simulation of plastic networks require
a higher computational effort.

We have also tried to evolve variable topology networks. In this case, the best
fitness reached plateaus around 4.5 and thus we could not evolve networks to solve
the task. Further work is needed to investigate reasons for the failure and solutions
for the growth of the networks.

8



7 Conclusion

We have succesfully evolved a fully connected spiking neural network of 125 neu-
rons, that allows a simple agent to alternatively push the 6 balls in its environment.
This push-and-seek reflex may be used in future experiments to bootstrap the de-
velopment of more complex behaviors. Also, the dynamics of the network may be
analyzed to uncover the mechanisms used by the agent for the measurement of the
distance it pushed a particular ball, or the memory mechanisms which permit the
agent to choose balls not pushed yet.

The current experiment evolved a network much larger than the spiking neural
networks evolved in previous studies for the control of embodied agent, which em-
ployed no more than 23 neurons (Floreano and Mattiussi, 2001; Floreano, Schoeni,
Caprari and Blynel, 2002; Floreano, Zufferey and Mattiussi, 2002; French and
Damper, 2002; Di Paolo, 2002a,b; Katada et al., 2003). This was possible because
we used a fast agent-environment simulator especially designed for evolutionary
and developmental experiments, and a fast event-driven neural network simulator.

Further research will analyze the evolved networks, will try to evolve variable
topology networks able to solve the task, and will also try to evolve networks ca-
pable of solving more dificult tasks, such as sorting the balls by size.
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