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Abstract

We describe a simple iterative algorithm for contact force computation,
similar to the Gauss-Seidel method for solving linear systems. Since this
method can be implemented in a few lines of code, it should be recognized
as the first option when implementing contact force computation.

1 Introduction
Scenes encountered in computer games and computer graphics commonly con-
tain solid objects. In order to prevent objects penetrating one another, contacts
between them must be detected and resolved by applying appropriate contact im-
pulses and forces. Here we focus on the problem of resting contacts, where the
relative normal velocity at the contact point is zero, and do not address the problem
of collisions, which requires a different, simpler analytical treatment. Thus, we
deal with contact forces only, and not with contact impulses. A popular method
for contact force computation is an algorithm introduced by Baraff (1994) that
introduced important improvements relative to the methods previously available.
An alternative method was developed by Faure (1996).

Here we describe a much simpler algorithm, inspired by the Gauss-Seidel it-
erative method for solving linear systems. Gauss-Seidel-like methods have been
previously used for contact force computation in simulators using the time-stepping
formulation of dynamics (Jourdan et al., 1998; Liu and Wang, 2005). The paper
by Jourdan et al. (1998) was also concerned with simulating frictional contact be-
tween a rigid object and an object modeled with finite elements, instead of the
more general problem of contacts between rigid bodies. In general, the presen-
tation of Gauss-Seidel methods for contact force computation has been done in
the framework of some complex systems, including features not related to con-
tact force computation. Thus, the simplicity and utility of this method have not
been made obvious in these previous papers, and the result is that the method
does not currently have the popularity that it deserves. Since this method can be
implemented in a few lines of code, we believe that it is extremely useful for fast
prototyping of games and physics simulation systems, and it should be recognized
as the first option when implementing contact force computation.

2 The problem
Our notation follows the one in (Baraff, 1994). We consider a set of rigid objects
contacting at n distinct points. The relative normal velocity at each contact point
is zero. We also consider here frictionless contact. We note with ai the relative
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normal acceleration at the contact point i. When choosing the sign of the normal
at the contact point, we adopt the convention that a positive ai indicates that the
objects are breaking contact at point i. Correspondingly, ai < 0 indicates that the
objects tend to interpenetrate.

We denote with fi the magnitude of the normal contact force at contact point
i. A positive fi indicates a repulsive force. Since contact forces are repulsive, we
must have fi ≥ 0. Another condition on the contact variables is fi ai = 0 at each
contact point, since either there is a contact force when ai = 0 and the contact
remains, either fi = 0 when ai > 0 and the contact is broken.

We denote by a the vector formed by putting the ai’s together, and by f the
vector formed from the fi’s. The acceleration vector linearly depends on the force
vector:

a = A f+b (1)

A derivation of this relation for a system of rigid bodies that are not subjected to
additional constraints other than the resting contacts is presented in the Appendix.
The matrix A reflects the masses and contact geometries of the bodies, while b
reflects the external and inertial forces applied to the bodies. At any instant of
time, A and b are known quantities, while f is the unknown we are interested in
solving for, subject to the following conditions:

ai ≥ 0; fi ≥ 0; fi ai = 0 (2)

at each contact point.

3 The algorithm
The algorithm works by iteratively analyzing each of the n contacts. For each
contact, the algorithm modifies the force at the contact to comply with the con-
straints (Eq. 2), assuming that the other contact points are previously solved. Each
iteration brings f closer to the solution.

The algorithm is presented in pseudocode below:
Choosing the convergence criterium depends on your application. You may

define a constant number of iterations, or monitor the change of f over the itera-
tions, or, in an interactive application, adapt the number of iterations to trade off
accuracy to speed, as needed.

In the algorithm, q represents the value of ai in the case that fi = 0. If q ≥ 0,
then it is not necessary to have a contact force and we set fi = 0. If q < 0, we need
to have a positive contribution Aii fi to ai = q+Aii fi, and we compute fi such that
ai = 0. We note that Aii is always positive because it reflects the positive masses
of the bodies.
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Algorithm 1 Computing contact forces
Require: n,Ai j,bi(i = 1 . . .n, j = 1 . . .n)
Ensure: fi according to the conditions in Eq. 2

for i = 1 to n do
fi = 0

end for
repeat

for i = 1 to n do
q = bi
for j = 1 to n do

if j 6= i then
q = q+Ai j f j

end if
end for
if q≥ 0 then

fi = 0
else

fi = fi−q/Aii
end if

end for
until convergence
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4 Discussion
The convergence and the uniqueness of the Gauss-Seidel method is not yet demon-
strated. The conditions for convergence of a different Gauss-Seidel method in 2D
are discussed in (Jourdan et al., 1998). It is also known that the convergence per-
formance of a Gauss-Seidel method depends on the initial guess (Liu and Wang,
2005); we successfully set up the initial values of the forces to 0, as shown in the
algorithm.

However, in our test simulations, in the framework of the Thyrix simulator
(Florian, 2003) and for less than 5 simultaneous contacts, the algorithm converged
to a solution comparable to the solution of Baraff’s algorithm in less than 10 it-
erations. Moreover, the Gauss-Seidel method does not suffer of problems that
Baraff’s algorithm sometimes have due to singularities. Thus, we have success-
fully used the method presented here in conjunction with Baraff’s method, as a
fail-safe when Baraff’s method does not converge.

In conclusion, we have presented an extremely simple algorithm for contact
force computation. This algorithm allows rapid prototyping of games and physics
simulators.

5 Appendix: Derivation of the contact matrix for a
system of independent rigid bodies

We consider a contact i between the rigid objects A and B. We assume that these
objects interact only through the resting contact i and eventually other resting con-
tacts, or through forces acting at distance that are fixed during contact calculation,
but not through other types of constraints, such as a chain of objects linked through
joints. We note with ni the normal at the contact point. The contact force acting on
A will be σiA fi ni and the force acting on B will be σiB fi ni, where the parameters
σ represent the direction of the contact force along the normal, σiA,B = ±1 and
σiA =−σiB. We also note by CA the set of the contacts acting on A. The vector piA
represents the position of contact point i relative to the center of mass of object A.

The forces acting on object A are the external forces summed into FE
A and the

contact forces ∑ j∈CA
σ jA f j n j. Thus, the acceleration aA of object A is

aA =
1

mA

(
FE

A + ∑
j∈CA

σ jA f j n j

)
, (3)

where mA is the mass of A.
The contact forces also generate a torque p jA×∑ j∈CA

σ jA f j n j on A that adds
to the external torques ME

A acting on the object. Thus, the angular acceleration of
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the object is

εA = I−1
A

(
ME

A + ∑
j∈CA

σ jA f j p jA×n j

)
, (4)

The acceleration of the contact point i that is connected to A is

aiA = aA + εA×piA +ωA× (ωA×piA), (5)

where ωA is the angular velocity of A.
By introducing Eqs. 3 and 4 in 6, we get:

aiA =
FE

A
mA

+I−1
A ME

A×piA+ωA×(ωA×piA)+ ∑
j∈CA

σ jA f j

[
n j

mA
+ I−1

A (p jA×n j)×piA

]
(6)

The relative normal acceleration between the bodies at i is

ai = (σiA aiA +σiB aiB) ·ni (7)

We see thus that aiA contributes to the contact matrix A with a term

Ai jA = σiA σ jA

[
n j

mA
+ I−1

A (p jA×n j)×piA

]
·ni (8)

corresponding to the element Ai j and to the contact vector b with a term

biA = σiA

[
FE

A
mA

+ I−1
A ME

A ×piA +ωA× (ωA×piA)
]
·ni (9)

corresponding to the element bi.
If contact j is a contact between A and B, j ∈ CA and j ∈ CB (it may be i

or another one), we also have a contribution Ai jB to Ai j from B, analogous to
Ai jA, and finally we have Ai j = Ai jA + Ai jB. If j ∈ CA and j /∈ CB, then Ai j =
Ai jA. Analogously, if k /∈ CA and k ∈ CB, then Aik = AikB. In practice, when
implementing the computation of Ai j we will initially set it to zero and then add
the contributions from the different objects in contact. We also have bi = biA +biB.

By computing Aii from the equations above, we get Aii = 1/mA + 1/mB, and
thus Aii > 0.
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