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Abstract

The problem of balancing a pole on a moving cart is a widely used benchmark
problem for testing reinforcement learning algorithms. The classic papers that
introduced this problem contain mistakes in the equations that govern the dynamics
of the cart-pole system, and these mistakes propagated in other studies that used
the same problem as a benchmark. Here we provide the equations that describe
correctly the dynamics of the system.

1 Introduction
The control of a cart-pole system is widely used as a benchmark problem for testing
the efficiency of reinforcement learning algorithms. It seems to have been first used as
a test problem in adaptive control by Michie and Chambers (1968a,b) and became a
more famous problem since its use in the paper of Barto et al. (1983). Google Scholar1

reports about 500 papers citing this paper, and about 100 papers containing the words
“cart pole” or “cartpole”. There are, however, two mistakes in the equations from Barto
et al. (1983) that describe the dynamics of the cart pole. One mistake introduces a dif-
ference between the reported equations and the equations describing a correct physical
model, and the other mistake is probably a typo. The mistakes propagated in other
papers that followed the original paper of Barto (e.g., Anderson, 1986; Schmidhuber,
1990; Si and Wang, 2001). The existence of these mistakes does not affect the validity
of the reinforcement learning algorithms presented in the papers using them, because
the problematic equations still describe a complex dynamical system. However, we
believe that it is useful to be corrected, for the sake of scientific rigor.

Here we provide the equations that describe correctly, from a physical point of
view, the dynamics of the system.
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Figure 1: The cart-pole system.

2 The system
The studied system is a cart of which a rigid pole is hinged (see figure). The cart is
free to move within the bounds of a one-dimensional track. The pole can move in
the vertical plane parallel to the track. The controller can apply a force F to the cart,
parallel to the track. The cart has a mass mc; the pole has mass mp and length 2l. We
note with x the position of the cart along the track. The angle between the pole and the
vertical is θ . The friction coefficient between the cart and the track is µc; there also
exists friction in the articulation connecting the pole to the cart that leads to a torque
µp θ̇ .

3 The wrong equations and the mistakes
The equations reported in Barto et al. (1983) are:

θ̈ =

g sinθ + cosθ

[
−F −mp l θ̇ 2 sinθ + µc sgn(ẋ)

mc +mp

]
−

µp θ̇

mp l

l

[
4
3
−

mp cos2θ

mc +mp

] (1)

ẍ =
F +mp l [θ̇ 2sinθ − θ̈cosθ ]−µc sgn(ẋ)

mc +mp
(2)

The mistake inherent in these equations is related to the friction force between the
cart and the track, that is considered to be µc sgn(ẋ). The mistake is apparent even by

1http://scholar.google.com/
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dimensional analysis, observing that µc sgn(ẋ) is adimensional instead of having the
dimensionality of a force. In fact, the friction force is the product between the friction
coefficient and the magnitude of the force normal to the track; and the force normal to
the track is not constant, because the movement of the pole induces a variation in its
magnitude.

A second mistake in Barto et al. (1983) is to consider the gravitational acceleration
g in these equations to be negative (in the paper of Barto is specified that g = −9.8
m/s2). In fact, these equations are consistent with a positive value of g. Otherwise, the
term gsinθ would produce a negative θ̈ for a small θ , according to Eq. 1, meaning that
the gravity pushes the pole towards the vertical position; this is, of course, wrong.

4 Correct equations
We consider that the cart acts with a reaction force N on the pole, at the articulation.
According to the law of action-reaction, the pole will act on the cart with a force −N.

By applying Newton’s second law to the cart we get:

F+F f +Gc−N+Nc = mc ac, (3)

where Ff is the friction force between the cart and the track that acts on the cart, and
ac is the acceleration of the cart. We have F = F ux; F f = −Ff ux; Gc = mc g uy;
N = Nxux −Nyuy; Nc = −Nc uy; ac = ẍ ux; ux, uy and uz are the unit vectors of the
laboratory frame of reference (see figure). Decomposing the previous equation on the
x and y axis we get

F −Ff −Nx = mc ẍ (4)
mc g+Ny−Nc = 0. (5)

According to the Coulomb model of friction, and assuming that the track limits the
movement of the cart both downwards and upwards, the friction force is

Ff = µc |Nc| sgn(ẋ) = µc Nc sgn(Nc ẋ). (6)

By applying Newton’s second law to the linear movement of the pole we get:

N+Gp = mp ap, (7)

where Gp = mp g uy. The acceleration ap of the center of mass of the pole is due to the
composed effects of the acceleration of the cart it is attached to, and of the rotation of
the pole with angular velocity ωωω = θ̇ uz and angular acceleration εεε = θ̈ uz:

ap = ac + εεε × rp +ωωω × (ωωω × rp), (8)

where rp = l (sinθ ux−cosθ uy) is the vector representing the position of the center of
mass of the pole relative to the articulation around which the pole rotates. Thus, we get

ap = ẍ ux + l θ̈ uz× (sinθ ux − cosθ uy)+ l θ̇
2 uz× [uz× (sinθ ux − cosθ uy)]. (9)

We have uz×ux = uy and uz×uy =−ux. Hence,

ap = ẍ ux + l θ̈ (sinθ uy + cosθ ux)− l θ̇
2(sinθ ux − cosθ uy). (10)
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An alternative way to get to the previous equation is to compute directly the accelera-
tion component due to the angular velocity, −l θ̇ 2 u′x, and the acceleration component
due to the angular acceleration, l θ̈ u′y, and expressing the unit vectors u′x and u′y of
the frame of reference rotating with the pole in the laboratory frame of reference. By
introducing Eq. 10 into 7 and decomposing on the x and y axis we get

Nx = mp (ẍ+ l θ̈ cosθ − l θ̇
2 sinθ) (11)

mp g−Ny = mp (l θ̈ sinθ + l θ̇
2 cosθ) (12)

By applying Newton’s second law to the rotational movement of the pole around
the articulation (that moves with acceleration ac relative to the laboratory frame of
reference) we get:

M = I εεε + rp×ac, (13)

where M = rp ×Gp −µp θ̇ uz is the sum of the non-inertial torques acting on the pole
relative to the articulation, I = 4/3 mp l2 is the moment of inertia of the pole relative to
the articulation, and −rp×ac can be interpreted as the torque generated by the inertial
force caused by the acceleration of the cart. Hence, we get

mp g l sinθ −µp θ̇ = 4/3 mp l2
θ̈ +mp ẍ l cosθ . (14)

From Eq. 4 and 11 we get:

ẍ =
F +mp l (θ̇ 2 sinθ − θ̈ cosθ)−Ff

mc +mp
, (15)

and by introducing this into Eq. 14 we get

θ̈ =

g sinθ + cosθ

[
−F −mp l θ̇ 2 sinθ +Ff

mc +mp

]
−

µp θ̇

mp l

l

[
4
3
−

mp cos2θ

mc +mp

] . (16)

We see that the last two equations are the same as Barto’s equations 1 and 2, with the
difference that Barto used a form of the friction force Ff that is wrong. Indeed, from
Eq. 6, 5 and 12 we get

Nc = (mc +mp)g−mp l (θ̈ sinθ + θ̇
2 cosθ) (17)

Ff = µc [(mc +mp)g−mp l (θ̈ sinθ + θ̇
2 cosθ)] sgn(Nc ẋ). (18)

By introducing the previous equation in Eq. 15 and then in 16, we get

θ̈ =

g sinθ + cosθ

{
−F −mp l θ̇ 2 [sinθ + µc sgn(Nc ẋ) cosθ ]

mc +mp
+ µc g sgn(Nc ẋ)

}
−

µp θ̇

mp l

l

{
4
3
−

mp cosθ

mc +mp
[cosθ −µc sgn(Nc ẋ)]

} .

(19)
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5 Conclusion
In conclusion, we have provided dynamical equations for the cart-pole system that are
correct from a physical point of view. They are:

Nc = (mc +mp)g−mp l (θ̈ sinθ + θ̇
2 cosθ) (20)

θ̈ =

g sinθ + cosθ

{
−F −mp l θ̇ 2 [sinθ + µc sgn(Nc ẋ) cosθ ]

mc +mp
+ µc g sgn(Nc ẋ)

}
−

µp θ̇

mp l

l

{
4
3
−

mp cosθ

mc +mp
[cosθ −µc sgn(Nc ẋ)]

}
(21)

ẍ =
F +mp l (θ̇ 2 sinθ − θ̈ cosθ)−µc Nc sgn(Nc ẋ)

mc +mp
. (22)

During a simulation of the system, at each timestep, we may assume that Nc has the
same sign as at the previous timestep (we may consider it to be positive at the beginning
of the simulation) and compute θ̈ according to Eq. 21. We then compute Nc using the
value of θ̈ that we obtained, according to Eq. 20; if Nc changes sign, we compute again
θ̈ taking into account the new sign. Finally, we compute ẍ according to 22. Usually,
for common choices of the parameters, Nc will be always positive, as the cart should
not try to jump off the track.

If we neglect friction, the equations are

θ̈ =

g sinθ + cosθ

(
−F −mp l θ̇ 2 sinθ

mc +mp

)

l

(
4
3
−

mp cos2θ

mc +mp

) (23)

ẍ =
F +mp l (θ̇ 2 sinθ − θ̈ cosθ)

mc +mp
. (24)

In these equations, g is positive, and not negative, as mistakenly indicated in the
paper of Barto.
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